Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D= x^2+2*(1/2)xy+((1/2)y)^2+(3/4)y^2+1
=(x+(1/2)y)^2 +1
Nên min D=1
E=(2x-1)^2+(y-1)^2+(x-3y)^2+1
nên min E=1
a) \(A=x^2+6x+11\)
\(A=x^2+6x+9+2\)
\(A=\left(x+3\right)^2+2\)
Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)
Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy: \(Min_A=2\) tại \(x=-3\)
b) \(B=4x-x^2+1\)
\(B=-x^2+4x-4+5\)
\(B=-\left(x-2\right)^2+5\)
\(B=5-\left(x-2\right)^2\)
Có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow5-\left(x-2\right)^2\le5\)
Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy: \(Max_B=5\) tại \(x=2\)
\(A=\left(x-1\right)^2+2\ge2\)
\(B=-\left(x+2\right)^2+7\le7\)
\(C=2\left(x+1\right)^2+3\ge3\)
\(D=\left(x-1\right)^2+2\left(y+3\right)^2+\left(3z+1\right)^2+4\ge4\)
\(E=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)
\(F=\left(x-2\right)^2+\left(y+1\right)^2\ge0\)
\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(H=-x^2+7x+74=-\left(x-\frac{7}{2}\right)^2+\frac{345}{4}\le\frac{345}{4}\)
có thể trả lời đầy đủ giúp mình câu b, c, d, h được ko ??????????
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
\(A=x^2-10x+26\)
\(=\left(x^2-10x+25\right)+1\)
\(=\left(x-5\right)^2+1\ge1\)
Vậy \(Min_A=1\) khi \(x-5=0\Rightarrow x=5\)
\(B=x^2+7x+10=\left(x^2+7x+\dfrac{49}{4}\right)-\dfrac{9}{4}=\left(x+\dfrac{7}{2}\right)^2-\dfrac{9}{4}\ge\dfrac{-9}{4}\)Vậy \(Min_B=\dfrac{-9}{4}\) khi \(x+\dfrac{7}{2}=0\Rightarrow x=\dfrac{-7}{2}\)
\(C=4x^2+8x+15=4\left(x^2+2x+1\right)+11=4\left(x+1\right)^2+11\ge11\)Vậy \(Min_C=11\) khi \(x+1=0\Rightarrow x=-1\)
\(D=3x^2-7x+20=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{191}{12}=3\left(x-\dfrac{7}{6}\right)^2+\dfrac{191}{12}\ge\dfrac{191}{12}\)Vậy \(Min_D=\dfrac{191}{12}\) khi \(x-\dfrac{7}{6}=0\Rightarrow x=\dfrac{7}{6}\)
\(E=x^2-4xy+5y^2-22y+8\)
\(=\left(x^2-4xy+4y^2\right)+\left(y^2-22y+121\right)-113\)\(=\left(x-2y\right)^2+\left(y-11\right)^2-113\ge-113\)
Vậy \(Min_E=-113\) khi \(\left[{}\begin{matrix}x-2y=0\\x-11=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}11-2y=0\\x=11\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2y=11\\x=11\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=11\end{matrix}\right.\)
B=[(x - 2)(x - 5)](x2– 7x - 10)
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100
=>(x2-7x)2\(\ge\) 100
GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7
B = x2 - 4xy + 5y2 + 10x - 22y + 28
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2
GTNN B = 2, khi y=1, x=-3