Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: |4,3- x| ≥ 0 với mọi x
=> 3,7+|4,3-x| ≥ 3,7 với mọi x
=> A ≥3,7 với mọi x
=> Min A = 3,7
Vì |4,3-x|= 0
=> 4,3-x = 0
=> x = 4,3
Vậy x=4,3 thì A=3,7
b, Ta có: \(\left(2x+\frac{1}{3}\right)^4\text{≥}0\)(vì số mũ chẵn) với mọi x
=> B ≥ 0 với mọi x
=> Min B = 0
Vì \(\left(2x+\frac{1}{3}\right)^4=0\)
=> \(2x+\frac{1}{3}=0\)
=> \(2x=-\frac{1}{3}\)
=> \(x=-\frac{1}{3}.\frac{1}{2}\)
=> \(x=-\frac{1}{6}\)
Vậy \(x=-\frac{1}{6}\)thì B= 0
c, Ta có: |x-4| ≥ 0 với mọi x
=> -|x-4|≤ 0 với mọi x
=> 0,5 - |x-4| ≤ 0,5 với mọi x
=> C ≤ 0,5 với mọi x
=> Max C = 0,5
Vì |x-4|= 0
=> x-4 =0
=> x = 4
Vậy x=4 thì C= 0,5
d, Ta có: \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\text{ ≥}0\) ( vì số mũ chẵn) với mọi x
=> \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6 \text{≤}0\)với mọi x
=> \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\text{≤}3\)với mọi x
=> D ≤ 3 với mọi x
=> Max D = 3
Vì \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\)
=> \(\frac{4}{9}x-\frac{2}{15}=0\)
=> \(\frac{4}{9}x=\frac{2}{15}\)
=> \(x=\frac{2}{15}.\frac{9}{4}\)
=> \(x=\frac{3}{10}\)
Vậy \(x=\frac{3}{10}\)thì D =3
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Khi đó: \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
Vậy \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
1.
a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)
b) x=0
d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)
e) \(x=\frac{2}{3}\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
A=(2x-3)2+4/9
MinA đạt được khi và chỉ khi (2x-3)2+4/9=4/9
<=> (2x-3)2=0
<=> x=1,5
Vậy MinA=4/9 đạt được khi x=1,5
b, Ta có:
|2x-3/4||\(\ge\)0
=> |2x-3/4|-1/2 \(\ge\) -1/2
MinA=-1/2 đạt được khi và chỉ khi
|2x-3/4|=0
<=>x=3/8
Vậy MinA=-1/2 đạt được khi x=3/8
òi mấy câu còn lại chú cứ làm tương tự không hiểu ib hỏi anh
c/ Ta có \(\left|x\right|\ge x\)(BĐT giá trị tuyệt đối)
=> \(x+\left|x\right|\ge x+x=2x\)
Vậy GTNN của C là 2x.
d/ Ta có \(x\ge1\)
=> \(\sqrt{x-1}\ge0\)với \(x\ge1\)
=> \(\sqrt{x-1}+5\ge5\)
Vậy GTNN của D là 5.