K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

x^2 + 14x + y^2 - 2y + 7

( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43

( x-7)^2 + ( y-1)^2 - 43 

 Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

24 tháng 5 2017

Phần b cũng tương tự như vậy nhé!

6 tháng 7 2016

a) D=x2-3x+5=x2-3x+2,25+2,75=(x-1,5)2+2,75

Vì (x-1,5)2luôn lớn hơn hoặc bằng 0 nên để D nhỏ nhất thì (x-1,5)2cũng phải nhỏ nhất hay (x-1,5)2=0 =>x=1,5

b)-43

6 tháng 7 2016

bài dạng này chỉ có các bn thi violympic làm dc thui

tui làm phần E  nếu h sẽ lam hêt k thi bye

E = (x+7)2 + ( y-1)2 -49 -1 +7 

GTNN:  E = -43

31 tháng 10 2022

a: =x^2+10x+25+2=(x+5)^2+2>=2

Dấu = xảy ra khi x=-5

b: =x^2+x+1/4+27/4

=(x+1/2)^2+27/4>=27/4

Dấu = xảy ra khi x=-1/2

c: =x^2-12x+36+1=(x-6)^2+1>=1

Dấu = xảy ra khi x=6

d: =x^2-3x+9/4+11/4=(x-3/2)^2+11/4>=11/4

Dấu = xảy ra khi x=3/2

26 tháng 5 2017

Đặt \(A=x^2+4xy+2y^2-22y+173\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2-22y+121\right)+52\)

\(A=\left(x+y\right)^2+\left(y-11\right)^2+52\)

\(\left(x+y\right)^2\ge0;\left(y-11\right)^2\ge0\) với mọi x;y => \(A=\left(x+y\right)^2+\left(y-11\right)^2+52\ge52\)

=>minA=52 <=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-11\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-11=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-11\\y=11\end{cases}}\)

Vậy min=52 khi x=-11 và y=11

26 tháng 5 2017

bài này mình làm tắt

\(B=-x^2-x-y^2-3y+13\)

\(B=\frac{31}{2}-\left(x^2+x+\frac{1}{4}\right)-\left(y^2+3y+\frac{9}{4}\right)\)

\(B=\frac{31}{2}-\left(x+\frac{1}{2}\right)^2-\left(y+\frac{3}{2}\right)^2\le\frac{31}{2}\)

=>maxB=31/2 <=>x=-1/2 và y=-3/2

20 tháng 8 2017

a) \(E=4x^2+y^2-4x-2y+3=\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của E là 1 khi \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)vậy GTNN của E là 1 khi \(x=\dfrac{1}{2};y=1\)

b) \(G=x^2+2y^2+2xy-2y=\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của G là \(-1\) khi \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1\end{matrix}\right.\) vậy GTNN của G là \(-1\) khi \(y=1;x=-1\)

c) \(H=x^2+14x+y^2-2y+7=\left(x^2+14x+49\right)+\left(y^2-2y+1\right)-43\)

\(=\left(x+7\right)^2+\left(y-1\right)^2-43\ge-43\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của H là \(-43\) khi \(\left\{{}\begin{matrix}\left(x+7\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=1\end{matrix}\right.\) vậy GTNN của H là \(-43\) khi \(x=-7;y=1\)

d) câu này hình như đề sai

8 tháng 7 2018

a) \(A=x^2-20x+101\)

\(=x^2-2.x.10+10^2+1\)

\(=\left(x-10\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\left(x-10\right)^2=0\)

=> \(x-10=0\)

=> \(x=10\)

Vậy A min = 1 tại x = 10

b) \(B=4a^2+4a+2\)

\(=\left(2a\right)^2+2.2a.1+1^2+1\)

\(=\left(2a+1\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\left(2x+1\right)^2=0\)

=> \(2x+1=0\)

=> \(2x=-1\)

=> \(x=\frac{-1}{2}\)

Vậy B min = 1 tại \(x=\frac{1}{2}\)

c) Mình không biết làm mong bạn thông cảm

d)\(D=x^2+2y^2-2xy-4y+5\)

\(=x^2-2xy+y^2+y^2-2.y.2+2^2+1\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x\)

Dấu = xảy ra khi \(\hept{\begin{cases}\left(y-2\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}y-2=0\\x-y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x-2=0\end{cases}}\hept{\begin{cases}y=2\\x=2\end{cases}}\)

Vậy D min = 1 tại x = y = 2

Bài 2: 

a: Sửa đề: \(-x^2+4x-y^2-12y+47\)

\(=-\left(x^2-4x+y^2+12y-47\right)\)

\(=-\left(x^2-4x+4+y^2+12y+36-87\right)\)

\(=-\left(x-2\right)^2-\left(y+6\right)^2+87< =87\)

Dấu '=' xảy ra khi x=2 và y=-6

b: \(-x^2-x-y^2-3y+13\)

\(=-\left(x^2+x+y^2+3y-13\right)\)

\(=-\left(x^2+x+\dfrac{1}{4}+y^2+3y+\dfrac{9}{4}-\dfrac{91}{5}\right)\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\left(y+\dfrac{3}{2}\right)^2+\dfrac{91}{5}\le\dfrac{91}{5}\)

Dấu '=' xảy ra khi x=-1/2 và y=-3/2

 

NV
27 tháng 10 2019

\(A=\left(x-1\right)^2+2\ge2\)

\(B=-\left(x+2\right)^2+7\le7\)

\(C=2\left(x+1\right)^2+3\ge3\)

\(D=\left(x-1\right)^2+2\left(y+3\right)^2+\left(3z+1\right)^2+4\ge4\)

\(E=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)

\(F=\left(x-2\right)^2+\left(y+1\right)^2\ge0\)

\(G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

\(H=-x^2+7x+74=-\left(x-\frac{7}{2}\right)^2+\frac{345}{4}\le\frac{345}{4}\)

27 tháng 10 2019

có thể trả lời đầy đủ giúp mình câu b, c, d, h được ko ??????????