K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4

=> GTNN a) =3/4 khi x=-1/2

b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6

=> GTNN b) = -6 khi x=-1/2

c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12

GTNN c) =12 khi x=-1 

d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14

GTNN d) =-14 khi x=2 , y=4

25 tháng 9 2021

\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)

Dấu \("="\Leftrightarrow x=-1\)

\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

19 tháng 9 2020

a) Đặt \(A=x^2-2x+1\)

    Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)

     Vì \(\left(x-1\right)^2\ge0\forall x\)

    \(\Rightarrow A_{min}=0\)

    Dấu "=" xảy ra khi: \(x-1=0\)

                            \(\Leftrightarrow x=1\)

Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)

19 tháng 9 2020

b) Ta có: \(M=x^2-3x+10\)

        \(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)

        \(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)

    Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)

     \(\Rightarrow\)\(M_{min}=\frac{31}{4}\)

    Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)

                            \(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)

1 tháng 12 2016

GTNN :

B=4x2+4x+11

= (2x)2+2*x*2+22+7

=(2x+2)2+7>= 7

dấu ''='' sảy ra khi 2x+2=0

                        => x = -1

vậy GTNN của biểu thức B là 7 tại x = -1

         

30 tháng 9 2018

\(B=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dau "=" xay ra  <=>  \(x=-\frac{1}{2}\)

Vay.....

17 tháng 7 2019

\(x^2+x+1=\left(x^2+\frac{1}{2}\cdot2\cdot x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)

17 tháng 7 2019

\(4x^2+4x-5=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)

Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)

15 tháng 6 2018

Tìm GTNN

a/ \(A=4x^2+7x+13=\left(4x^2+7x+\frac{49}{16}\right)+\frac{159}{16}=\left(2x+\frac{7}{4}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)

b/ \(B=5-8x+x^2=\left(x^2-8x+16\right)-11=\left(x-4\right)^2-11\ge-11\)

c/ \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

15 tháng 6 2018

@alibaba nguyễn giúp mình với

12 tháng 7 2017

b) B =  x2 - 3x + 5
       = (x2 - 3x + 9/4) + 11/4
       = (x - 3/2)2 + 11/4 >= 11/4
GTNN của B là 11/4

c) C =  x2 - x + 6
       = (x2 - x + 1/4) + 23/4
       = (x - 1/2)2 + 23/4 >= 23/4
GTNN của C là 23/4

d) D =  4x2 - 4x + 6
       = (4x2 - 4x + 1) + 5
       = (2x - 1)2 + 5 >= 5
GTNN của D là 5

12 tháng 7 2017

tui kko hỉu 23/4 la sao

17 tháng 9 2018

Bài dài quá bạn mình VD mỗi bài 1 câu thôi 

Bài 1 : Phương pháp : biểu diễn biểu thức dưới dạng một lũy thừa mũ chẵn cộng với một số nguyên dương

a) x2 + 2x + 2 

= x2 + 2 . x . 1 + 11 + 1

= ( x + 1 )2 + 1

mà ( x + 1 )2 >= 0 với mọi x

=> ( x + 1 )2 + 1 >= 1 với mọi x => vô nghiệm

17 tháng 9 2018

Bài 2 :

a) \(4x^2-12x+11\)

\(=4\left(x^2-3x+\frac{11}{4}\right)\)

\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{1}{2}\right)\)

\(=4\left[\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\right]\)

\(=4\left(x-\frac{3}{2}\right)^2+2\)

mà 4 ( x - 3/2 )2 >= 0 với mọi x

=> biểu thức >= 2 với mọi x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Amin = 2 <=> x = 3/2

28 tháng 7 2018

a)  \(A=x^2+8x=x^2+8x+16-16=\left(x+4\right)^2-16\ge-16\)

Vậy MIN \(A=-16\)khi  \(x=-4\)

b)  \(B=x^2-4x+y^2-8y+6=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Vậy MIN   \(B=-14\) khi  \(x=2;\)\(y=4\)