Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(-1+\left(8-4x\right)^2\ge-1\)
Dấu "=" xảy ra khi và chỉ khi (8 - 4x)2 = 0 => 8 - 4x = 0 => 4x = 8 => x = 2
Vậy GTNN của -1 + (8 - 4x)2 là -1 khi và chỉ khi x = 2
2) Ta có: \(5-\left(2+3x\right)^4\le5\)
Dấu ''='' xảy ra khi và chỉ khi (2 + 3x)4 = 0 => 2 + 3x = 0 => 3x = -2 => x = -2/3
Vậy GTLN của 5 - (2 + 3x)4 là 5 khi và chỉ khi x = -2/3
(8-4x)2 >=0 nên -1+(8-4x)2 >=-1 nên GTNN: -1
Tương tự (2+3x)4 >=0 nên GTLN: 5
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
a, B=2.(x+1)2+17
Vì (x+1)2 >= 0 Với mọi x
<=> 2.(x+1)2 >= 0
<=> 2.(x+1)2 >= 0 +17
<=> 2.(x+1)2 >= 17
Vậy GTNN là 17
b, C ; D tương tự
E= 10 - | x - 8 |
Vì | x-8 | >= 0 Với mọi x
<=> 10 - | x-8 | =< 10-0
<=> 10 - | x-8 | =< 10
Vậy GTLN là 10
ta có \(A=x^2-5x+3=x^2-\frac{2.x.5}{2}+\frac{5^2}{4}-\frac{13}{4}=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)
vì \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow A\ge-\frac{13}{4}\)
dáu = xảy ra <=> x=5/2
b) ta có \(B=2x^2-4x+5=2\left(x^2-2x+\frac{5}{2}\right)\) \(=2\left(x^2-2x+1+\frac{3}{2}\right)=2\left[\left(x-1\right)^2+\frac{3}{2}\right]=2\left(x-1\right)^2+3\)
vì \(2\left(x-1\right)^2\ge0\Rightarrow B\ge3\)
dấu = xảy ra <=> x=1
\(-1+\left(8-4x\right)^2\)
Ta có : \(\left(8-4x\right)^2\ge0\)
\(\Rightarrow-1+\left(8-4x\right)^2\ge-1\)
Dấu " =" xảy ra khi và chỉ khi \(8-4x=0\)
\(4x=8\)
. \(x=2\)
Vậy \(Min\) của \(-1+\left(8-4x\right)^2\) là -1 khi và chỉ khi \(x=2\)