Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017
phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:
\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)
vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)
nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)
vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)
\(D=\left|x-2\right|+\left|y+1\right|+3\)
\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)
nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)
vậy \(MinA=3\Leftrightarrow x=2;y=-1\)
a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)
Vậy Amin = 0 , khi x = \(-\frac{1}{2}\)
b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)
Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)
Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)
Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)
\(A=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
\(\Rightarrow A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\ge\left|x-2017+x-2018+2019-x+2020-x\right|\)
\(\Rightarrow A\ge\left|4\right|\)
\(\Rightarrow A\ge4.\)
Dấu '' = '' xảy ra khi:
\(\left(x-2017\right).\left(x-2018\right).\left(2019-x\right).\left(2020-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2017\ge0\\x-2018\ge0\\2019-x\ge0\\2020-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2017\le0\\x-2018\le0\\2019-x\le0\\2020-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2017\\x\ge2018\\x\le2019\\x\le2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2017\\x\le2018\\x\ge2019\\x\ge2020\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2018\le x\le2019\\x\in\varnothing\end{matrix}\right.\)
Vậy \(MIN_A=4\) khi \(2018\le x\le2019.\)
Chúc bạn học tốt!
\(C=\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}=\dfrac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=1-\dfrac{1}{\left|x-2017\right|+2019}\)
Vì \(\left|x-2017\right|\ge0\Rightarrow\left|x-2017\right|+2019\ge2019\Rightarrow\dfrac{1}{\left|x-2017\right|+2019}\le\dfrac{1}{2019}\)
\(\Rightarrow C=1-\dfrac{1}{\left|x-2017\right|+2019}\ge1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)
Dấu "=" xảy ra <=> \(\left|x-2017\right|=0\Leftrightarrow x=2017\)
Vậy \(A_{Min}=\dfrac{2018}{2019}\) khi x = 2017
ta có
\(A=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x-2017\right|=1\)
dấu bằng xảy ra khi (x-2017)(x-2018)\(\ge\)0
bn tự làm tiếp