Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :
\(\left[\left(\sqrt{\frac{2}{1-x}}\right)^2+\left(\sqrt{\frac{1}{x}}\right)^2\right]\left[\sqrt{1-x}^2+\sqrt{x}^2\right]\ge\left(\sqrt{\frac{2}{1-x}}.\sqrt{1-x}+\sqrt{\frac{1}{x}}.\sqrt{x}\right)^2\)
\(\Rightarrow\left(\frac{2}{1-x}+\frac{1}{x}\right)\left(1-x+x\right)\ge\left(\sqrt{2}+\sqrt{1}\right)^2\Rightarrow A\ge3+2\sqrt{2}\)
Dấu "=" xảy ra khi \(x=\sqrt{2}-1\)
Với mọi 0 < x < 1 ta có:
\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)
Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Kết luận:...
\(A=\frac{9x}{2-x}+\frac{2}{x}\)
\(=\frac{9x}{2-x}+\frac{2-x}{x}+1\)
AD BĐT Cosi cho 2 số thực không âm ta có:
\(\frac{9x}{2-x}+\frac{2-x}{x}\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}=2\sqrt{9}=6\)
\(\Rightarrow A\ge6+1=7\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{9x}{2-x}=\frac{2-x}{x}\Leftrightarrow x=\frac{1}{2}\)
Vậy \(A_{min}=7\Leftrightarrow x=\frac{1}{2}\)
A=\(\frac{9x}{2-x}+\frac{2-x}{x}+1\)
Áp đụng bđt cô-si
A \(\ge2\ \cdot3\ +1\ =7\ \)
\(A=\frac{9x}{2-x}+\frac{2}{x}\)( Điều kiện : \(x\ne0; x\ne2\))
\(=\frac{9x}{2-x}+\frac{2-x+x}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\)
Do 0<x<2 nên 2-x > 0. Áp dụng bdt Cauchy cho 2 số dương, ta có
\(\frac{9x}{2-x}+\frac{2-x}{x}\ge2\sqrt{\frac{9x}{2-x}\cdot\frac{2-x}{x}}=6\)\(\Leftrightarrow\frac{9x}{2-x}+\frac{2-x}{x}+1\ge7\Leftrightarrow A\ge7\)
Dấu "=" xảy ra \(\Leftrightarrow \frac{9x}{2-x}=\frac{2-x}{x} \Leftrightarrow 9x^2=\left(2-x\right)^2\Leftrightarrow3x=2-x\)( do \(x>0 ; 2-x>0\))
\(\Leftrightarrow x=\frac{1}{2}\)(nhận)
Vậy GTNN của A là 7 tại x = 1/2