Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
e) E >= 2021
dấu = xảy ra khi x=1/2
g) G = |x-1|+ |2-x| >= |x-1+2-x|=1
Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2
h) H = |x-1|+|x-2| + |x-3|
Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2
|x-2| >=0
=> H>=2
Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0
<=> x=2
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Ta có : |2x-2| + |2x-1| = |2x-2| + |1-2x| >= |2x-2+1-2x|=1
|2x-1| >=0
Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0
<=> x=1/2
e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
Vậy...
b)G=|x-1|+ |2-x|\(\)
áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)
\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)
\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)
Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)
Vậy...
h)H= |x-1|+|x-2| + |x-3|
Ta có |x-1| + |x-3|
=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)
=>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)
<=>|x-1| + |3-x|\(\ge2\forall x\) (1)
Mà |x-2|\(\ge0\forall x\) (2)
Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)
Dấu "=" xảy ra khi x-2=0
<=>x=2
Vậy...
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Mà : |2x-2| + |2x-1|
=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)
Lại có |2x-1| \(\ge\)0 \(\forall x\)
Dấu "=" xảy ra 2x-1=0
<=>x=\(\dfrac{1}{2}\)
Vậy....
\(\left(2x-1\right)^2-3.\left(x+2\right)^2=4.\left(x-2\right)-5.\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-3\left(x^2+4x+4\right)=4x-8-5.\left(x^2-2x+1\right)\)
\(\Leftrightarrow4x^2-4x+1-3x^2-7x-12=4x-8-5x^2+10x-5\)
\(\Leftrightarrow x^2-11x-11=14x-13-5x^2\)
\(\Leftrightarrow6x^2-25x+2=0\)
Tự làm tiếp nha
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
e) Đặt x4+x2+1=a
=> a2-38a+105=0
=> a2-38a+361 -256=0
=> (a-19)2-162=0
=> (a-19-16)(a-19+16)=0
=> (a-35)(a-3)=0
=>\(\orbr{\begin{cases}a=35\\a=3\end{cases}}\)
Bạn cứ thay a vào và làm tiếp nha!
:V
Câu đầu cho x > 0 thì dễ hơn ......
Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)
Đẳng thức xảy ra tại x=1
\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1
Làm 2 cái thôi còn lại tương tự bạn nhé :)
+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)
\(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)
Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có:
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)
\(\Rightarrow\)\(D\ge3-2=1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)
\(\Leftrightarrow\sqrt{x}+2=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)
\(\Leftrightarrow x=\pm1\)
Vậy \(S=\left\{\pm1\right\}\)
the mình, ta nên đặt x-1=a , 2-x=b sao cho a,b>0, ta đc a+b=1 thì biểu thức S có dạng:
S= 1/a2+ 1/b2 + 1/ab = (1/a2 + 1/b2 - 2/ab) + 3/ab =(1/a - 1/b)2 + 3/ab.
Ta có (a+b)2 >= 4ab nên thay a+b=1 vào ta được 1>= 4ab
suy ra 1/ab >= 4 suy ra tiếp 3/ab >=12
mà (1/a - 1/b)2 >=0 nên S >= 12
dấu bằng sảy ra khi a=b=1/2 nên x=3/2
Lời giải:
Ta có: \(xy+yz+xz=1\)
\(\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\\ y^2+1=y^2+xy+yz+xz=(y+z)(y+x)\\ z^2+1=z^2+xy+yz+xz=(z+x)(z+y)\end{matrix}\right.\)
Do đó:
\(\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}=\sqrt{(y+z)^2}=y+z\)
\(\Rightarrow x\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=x(y+z)\)
Hoàn toàn tt:
\(y\sqrt{\frac{(z^2+1)(x^2+1)}{y^2+1}}=y(x+z)\); \(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)
Do đó:
\(A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)