K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

A= \(x^2-x+2=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\) với mọi x

=. Min A=\(\frac{7}{4}\)khi \(\left(x-\frac{1}{2}\right)^2=0\)<=> \(x=\frac{1}{2}\)

b) B= \(3x^2-6x=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-3\)

=> B= \(\left(\sqrt{3}x-\sqrt{3}\right)^2-3\ge-3\)

=> Min B=-3 <=> x=1

c) C= \(2x^2+4x=\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2\right]-2\)

=> C= \(\left(\sqrt{2}x-\sqrt{2}\right)^2-2\ge-2\)

=> min C=-2 khi x=1

9 tháng 8 2018

Mn xem nhanh nhanh cho mik chút nha ai đúng và nhanh nhất mik k cảm ơn mn nhìu

27 tháng 5 2021

Mk mới học lớp 6 ko biết làm

thông cảm nhưng

Hok tốt=))

2 tháng 9 2020

A = x2 + 4x + 9

= ( x2 + 4x + 4 ) + 5

= ( x + 2 )2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MinA = 5 <=> x = -2

B = x2 + 6x + 12

= ( x2 + 6x + 9 ) + 3

= ( x + 3 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinB = 3 <=> x = -3

C = x2 + 3x + 6

= ( x2 + 3x + 9/4 ) + 15/4

= ( x + 3/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

=> MinC = 15/4 <=> x = -3/2

D = x2 + 5x + 10

= ( x2 + 5x + 25/4 ) + 15/4

= ( x + 5/2 )2 + 15/4 ≥ 15/4 ∀ x

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinD = 15/4 <=> x = -5/2

E = 2x2 + 7x + 5

= 2( x2 + 7/2x + 49/16 ) - 9/8

= 2( x + 7/4 )2 - 9/8 ≥ -9/8 ∀ x

Đẳng thức xảy ra <=> x + 7/4 = 0 => x = -7/4

=> MinE = -9/8 <=> x = -7/4

F = 3x2 + 8x + 9

= 3( x2 + 8/3x + 16/9 ) + 11/3

= 3( x + 4/3 )2 + 11/3 ≥ 11/3 ∀ x

Đẳng thức xảy ra <=> x + 4/3 = 0 => x = -4/3

=> MinF = 11/3 <=> x = -4/3

31 tháng 7 2021

a) Đặt A = x2 + 6x + 25 = x2 + 6x + 9 + 16 = (x + 3)2 + 16 \(\ge16\)

Dấu "=" xảy ra khi x + 3 = 0 

\(\Rightarrow x=-3\)

Vậy Min A = 16 khi x = -3 

b) Đặt B = x2 - 4x + 10 = x2 - 4x + 4 + 6 = (x - 2)2 + 6 \(\ge6\)

Dấu "=" xảy ra khi x - 2 = 0 

\(\Rightarrow\)x = 2

Vậy Min B = 6 khi x = 2

c) Đặt C = x2 + y2 - 2x + 8y - 20 

= (x2 - 2x + 1) + (y2 + 8y + 16) - 37 

= (x - 1)2 + (y + 4)2 - 37 \(\ge-37\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}\)

Vậy Min C = -37 khi x = 1 ; y = - 4

25 tháng 7 2020

a) \(A=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 khi x = 2

b) B = \(2x^2-4x-6=2\left(x^2-2x-3\right)=2\left(x^2-2x+1\right)-8=2\left(x-1\right)^2-8\)

\(\left(x-1\right)^2\ge0\forall x\Rightarrow2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2-8\ge-8\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

Vậy BMin = -8 khi x = 1

c) C = \(3x^2+9x+6=3\left(x^2+3x+2\right)=3\left(x^2+3x+\frac{9}{4}\right)-\frac{3}{4}=3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\)

\(\left(x+\frac{3}{2}\right)^2\ge0\forall x\Rightarrow3\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow3\left(x+\frac{3}{2}\right)^2-\frac{3}{4}\ge-\frac{3}{4}\forall x\)

Đẳng thức xảy ra <=> x + 3/2 = 0 => x = -3/2

Vậy CMin = -3/4 khi x = -3/2

d) D = \(5x^2+5x+1=5\left(x^2+x+\frac{1}{5}\right)=5\left(x^2+x+\frac{1}{4}\right)-\frac{1}{4}=5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow5\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow5\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

Vậy DMin = -1/4 khi x = -1/2

6 tháng 11 2018

a)\(A=x^2-1\)

\(Nx:\)\(x^2\ge0\)

\(\Rightarrow A_{Min}=0-1=-1\Leftrightarrow x=0\)

b) \(B=x^2-2x+3\)

\(=x\left(x-2\right)+3\)

\(Nx:x\left(x-2\right)\ge0\)

\(\Rightarrow B_{Min}=3\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow x=0\)

c) \(C=\left|2x+1\right|-5\)

\(Nx:\left|2x+1\right|\ge0\Rightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)

\(\Rightarrow C_{Min}=-5\Leftrightarrow x=\frac{-1}{2}\)

d) \(D=3x^2+6x-7\)

\(=3\left(x^2+2x\right)-7\)

\(Nx:Min_{x^2+2x}=-1\Leftrightarrow x=-1\)

\(D_{Min}=-8\Leftrightarrow x=-1\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

1 tháng 5 2018

a,A(x)=-1+5x\(^6\)-6x\(^2\)-5-9x\(^6\)+4x\(^4\)-3x\(^2\)

=(-1-5)+(5x\(^6\)-9x\(^6\))+4x\(^4\)+(-6x\(^2\)-3x\(^2\))

=-6-4x\(^6\)+4x\(^4\)-9x\(^2\)

B(x)= 2-5x\(^2\)+3x\(^4\)-4x\(^2\)+3x+x\(^4\)-4x\(^6\)-7

=2-4x\(^6\)+(3x\(^4\)+x\(^4\))+(-5x\(^2\)-4x\(^2\))+(3x-7x)

=2-4x\(^6\)+4x\(^4\)-9x\(^2\)-4x b,* bậc của A(x) là 6 bậc của B(x) là 6 * Hệ số cao nhất của A(x) là -4 Hệ số cao nhất của B(x) là -4
24 tháng 7 2019

Bài này bạn đăng tận 2 lần luôn à. Nguyễn Thị Ngọc Anh

24 tháng 7 2019

lần 1 bị sai chép nhầm x vs z