K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

Ta có: \(B=\left|x-456\right|+\left|x-789\right|\ge\left|x-456\right|+\left|789-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(B\ge\left|x-456\right|+\left|789-x\right|\ge\left|x-456+789-x\right|=\left|789-456\right|=333\)

Dấu " = " xảy ra khi \(x-456\ge0;789-x\ge0\)

\(\Rightarrow x\ge456;x\le789\)

Vậy \(MIN_B=333\) khi \(456\le x\le789\)

6 tháng 12 2016

Chỗ đầu tiên đổi >= thành =, hiểu bản chất chứ thím

16 tháng 3 2016

xin lỗi bạn mình biết làm nhưng mình lười

16 tháng 3 2016

thôi vậy mình cho gợi ý nè

/x/+/y/>hoặc=/x+y/

dấu bằng xảy ra khi x*y>0

5 tháng 12 2016

\(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

\(\ge x-1+0+3-x=2\)

Dấu "=" khi \(\begin{cases}x-1\ge0\\x-2=0\\x-3\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x=2\\x\le3\end{cases}\)\(\Rightarrow x=2\)

Vậy \(Min_C=2\) khi x=2

5 tháng 12 2016

a)\(A=\left|x-2012\right|+\left|2011-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2012\right|+\left|2011-x\right|\ge\left|x-2012+2011-x\right|=1\)

Dấu "=" khi \(2011\le x\le2012\)

Vậy \(Min_A=1\) khi \(2011\le x\le2012\)

5 tháng 12 2016

d)\(D=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)

\(=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\)

\(\ge x-1+x-2+3-x+4-x=4\)

Dấu "=" khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Rightarrow2\le x\le3\)

Vậy \(Min_D=4\) khi \(2\le x\le3\)

7 tháng 8 2018

Ta có | x + 1 | \(\ge\)\(\forall\)x

=> 5 . | x + 1 | \(\ge\)\(\forall\)x

=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy, GTNN của A = 2018 khi và chỉ khi x = -1

7 tháng 8 2018

ta có :|x+1| >=0

  =>  5|x+1|>=0

=>  2018+5|x+1|>= 2018

dấu = xảy ra khi  |x+1|=0

                          x+1=0

                          x=-1

 vay gtnn cua bieu thuc tren la 2018  khi x=-1

21 tháng 2 2020

a) Ta có : A = - 15 - |7 - x| = -(15 + |7 - x|) 

vì \(\left|7-x\right|\ge0\forall x\Rightarrow15+\left|7-x\right|\ge15\Rightarrow-\left(15+\left|7-x\right|\right)\le-15\)

Dấu"=" xảy ra <=> 7 - x = 0

=> x = 7

Vậy GTLN của A là - 15 khi x = 7

b) Ta có : \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0}\)

=> \(\left|x+2,5\right|+\left(y-1\right)^4-6\ge-6\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}}\)

Vậy GTNN của B là - 6 khi \(\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)

21 tháng 2 2020

a) Vì \(\left|7-x\right|\ge0\forall x\)\(\Rightarrow-15-\left|7-x\right|\le-15\forall x\)

hay \(A\le-15\)

Dấu " = " xảy ra \(\Leftrightarrow7-x=0\)\(\Leftrightarrow x=7\)

Vậy \(maxA=-15\Leftrightarrow x=7\)

b) Vì \(\hept{\begin{cases}\left|x+2,5\right|\ge0\forall x\\\left(y-1\right)^4\ge0\forall y\end{cases}}\)\(\Rightarrow\left|x+2,5\right|+\left(y-1\right)^4\ge0\forall x,y\)

\(\Rightarrow\left|x+2,5\right|+\left|y-1\right|^4-6\ge-6\forall x,y\)

hay \(B\ge-6\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2,5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)

Vậy \(minB=-6\Leftrightarrow\hept{\begin{cases}x=-2,5\\y=1\end{cases}}\)

9 tháng 11 2018

A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất 

=> x - 1 lớn nhất 

=> x là số dương vô cùng đề sai nhá