Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= \(\frac{2n+1}{n+1}\)= \(\frac{2n+2-1}{n+1}\) = \(\frac{2n+2}{n+1}\) - \(\frac{1}{n-1}\) = 2- \(\frac{1}{n-1}\)
a) Vì 2 thuộc Z nên để P thuộc Z thì \(\frac{1}{n-1}\) phải thuộc Z
=> 1 chia hết cho n-1 => n-1 thuộc Ư(1)={1;-1}
TH1:n-1=1 => n=2
TH2:n-1=-1 => n=0. Vậy n thuộc {2;0}
- b) Vì 2 thuộc Z nên để P có GTLN thì -\(\frac{1}{n-1}\) có GTLN => \(\frac{1}{n-1}\) có GTNN
Ta có: 1 thuộc Z và \(\frac{1}{n-1}\) có GTNN => n-1 là số nguyên âm lớn nhất => n-1=-1 => n=0
Khi đó, P= \(\frac{2.0+1}{0+1}\) = \(\frac{1}{1}\)= 1
- Vì 2 thuộc Z nên để P có GTNN thì - \(\frac{1}{n-1}\) có GTNN => \(\frac{1}{n-1}\) có GTLN
=> n-1 là số nguyên dương nhỏ nhất => n-1=1 => n=2
Khi đó, P= \(\frac{2.2+1}{2+1}\)= \(\frac{5}{3}\)
P thuộc Z khi: 2n+1 chia hết cho n+1
<=> 2n+2-1 chia hết cho n+1<=> 2(n+1)-1 chia hết cho n+1
<=> 1 chia hết cho n+1 (vì: 2(n+1) chia hết cho n+1)
<=> n+1 E {-1;1} <=> n E {-2;0}. Vậy: n E {-2;0} P/S: E là thuộc nha!
b)\(P=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=2-\frac{1}{n+1}\)
+)P lớn nhất khi n+1 là số nguyên âm lớn nhất => n+1=-1=>n=-2
Thay vào ta được:
\(P_{max}=2-\frac{1}{-1}=2-\left(-1\right)=3\)
+)P nhỏ nhất khi n+1 là số nguyên dương bé nhất=>n+1=1=>n=0
Thay vào ta được:
\(P_{min}=2-\frac{1}{1}=2-1=1\)
x^2-2xy+6^2-12x+2y+45 = x^2-2x(y+6)^2-(y+6)^2+6y^2+2y+45=(x-y-6)^2-y^2-12y-36+6y^2+2y+45=(x-y-6)^2+5y^2-10y+9=(x-y-6)^2+5(y^2-2y+1)+4=(x-y-6)^2+5(y-1)^2+4suy ra min=4 va(x,y)=(7,1)
\(P=4a^2+4ab+4b^2-12a-12b+12=\left[\left(4a^2-12a+9\right)+2b\left(2a-3\right)+b^2\right]+3b^2-6b+12\\ =\left(2a+b-3\right)^2+3\left(b-1\right)^2+9\)
\(2P=2x^2-2y^2-2xy-2x+2y+2\)
\(2P=\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\)
Áp dụng BĐT Bunhiacopxki:
\(\left(1^2+1^2+1^2\right)\left[\left(x-y\right)^2+\left(1-x\right)^2+\left(y+1\right)^2\right]\ge\left(x-y+1-x+y+1\right)^2\)
\(3.2M\ge4\)
\(\Leftrightarrow M\ge\dfrac{2}{3}\)
Mmin\(=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{x-y}=\dfrac{1}{1-x}=\dfrac{1}{y+1}\)
\(\Leftrightarrow x=\dfrac{1}{3};y=\dfrac{-1}{3}\)