Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm
A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4
B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100
C, = 5x2+5 >=5
a)
\(A=x^2-3x+5=x^2-3x+\left(1,5\right)^2+2,75\\ A=\left(x-1,5\right)^2+2,75\ge2,75\)
đẳng thức xảy ra khi x-1,5=0 => x=1,5
vậy GTNN của A là 3,75 tại x=1,5
b)
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\\ B=4x^2-4x+1+x^2+4x+4\\ B=5x^2+5\ge5\)
đẳng thức xảy ra khi x=0
vậy GTNN của B là 5 tại x=0
c)
\(C=\left(x+3\right)\left(x-11\right)+2003\\ C=x^2-8x-33+2003\\ C=x^2-2.4x+16+1954\\ C=\left(x-4\right)^2+1954\ge1954\)
đẳng thức xảy ra khi x-4=0 => x=4
d)
\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\\ D=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\\ D=\left(x^2-7x\right)^2-100\ge-100\)
đẳng thức xảy ra khi:
\(x^2-7x=0\Rightarrow x\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
vậy GTNN của D là -100 tại x=0 hoặc x=7
a) \(A=x^2-3x+5=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)
ta có : \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\) với mọi \(x\)
\(\Rightarrow\) GTNN của \(A\) là \(\dfrac{11}{4}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
vậy GTNN của A là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
ta có : \(x^2\ge0\) với mọi \(x\) \(\Rightarrow5x^2+5\ge5\) với mọi \(x\)
\(\Rightarrow\) GTNN của B là 5 khi \(5x^2=0\Leftrightarrow x=0\)
vậy GTNN của B là 5 khi \(x=0\)
c) \(C=\left(x+3\right)\left(x-11\right)+2003=x^2-11x+3x-33+2003\)
\(=x^2-8x+16+1954=\left(x-4\right)^2+1954\)
ta có : \(\left(x-4\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-4\right)^2+1954\ge1954\) với mọi \(x\)
\(\Rightarrow\) GTNN của C là 1954 khi \(\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
vậy GTNN của C là 1954 khi \(x=4\)
d) câu này đề sai thì phải
Bài làm:
a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\)=> không phụ thuộc GT biến
b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)
\(=2x^2+6x-7x-2x^2+35+10x\)
\(=9x+35\)=> có phụ thuộc GT biến
c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)
\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)
\(=0\)=> không phụ thuộc GT biến
cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
a) A=x2+2.x.3/2+9/4++19/4=(x+3/2)2+19/4
A\(\ge\)19/4
=> GTNN của A là 19/4 khi x=-3/2
b)B=(x2-7x+10)(x2-7x-10)=(x2-7x)2-100
=> GTNN của B=-100 khi x= hoặc x=7