Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
@Nguyễn Nhật Minh
@Aki Tsuki
@Phùng Khánh Linh
@Nào Ai Biết
@Nguyễn Thanh Hằng
@Mysterious Person
giúp mk với
Bài 1:
\(A=-x^2-5x+3=\frac{37}{4}-(x^2+5x+\frac{25}{4})\)
\(=\frac{37}{4}-(x+\frac{5}{2})^2\)
Vì \((x+\frac{5}{2})^2\geq 0\Rightarrow A=\frac{37}{4}-(x+\frac{5}{2})^2\leq \frac{37}{4}-0=\frac{37}{4}\)
Vậy A(max)\(=\frac{37}{4}\Leftrightarrow x=\frac{-5}{2}\)
---------------
\(B=-2x^2-7x+9=\frac{121}{8}-2(x^2+\frac{7}{2}x+\frac{49}{16})\)
\(=\frac{121}{8}-2(x+\frac{7}{4})^2\)
Vì \((x+\frac{7}{4})^2\ge 0\Rightarrow B=\frac{121}{8}-2(x+\frac{7}{4})^2\leq \frac{121}{8}-2.0=\frac{121}{8}\)
Vậy B(max)\(=\frac{121}{8}\Leftrightarrow x=\frac{-7}{4}\)
Các câu còn lại bạn cũng làm tương tự.
a: \(A=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7< =7\)
Dấu '=' xảy ra khi x=2
b: \(B=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=1/2
c: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
e: \(E=-\left(x^2+6x+9+1\right)=-\left(x+3\right)^2-1< =-1\)
Dấu = xảy ra khi x=-3
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
\(A=x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5\ge5\)
Vậy GTNN của A là 5 khi x = 5
\(B=4x^2+4x+9=4x^2+4x+1+8=\left(2x+1\right)^2+8\ge8\)
Vậy GTNN của B là 8 khi x = \(-\dfrac{1}{2}\)
\(C=9x^2-12x+20=9x^2-12+4+16=\left(3x-2\right)^2+16\ge16\)
Vậy GTNN của C là 16 khi x = \(\dfrac{2}{3}\)
\(D=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN của D là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\)
\(E=2x^2+3x+5=2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{31}{8}=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{31}{8}\ge\dfrac{31}{8}\)
Vậy GTNN của E là \(\dfrac{31}{8}\) khi x = \(-\dfrac{3}{4}\)
\(F=3x^2-7x+6=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{23}{12}=\left(x-\dfrac{7}{6}\right)^2\ge\dfrac{23}{12}\)Vậy GTNN của F là \(\dfrac{23}{12}\) khi x = \(\dfrac{7}{6}\)