Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(2.\dfrac{a^2-b^2+4b-4}{2a-2b+4}\)
\(=\dfrac{a^2-\left(b-2\right)^2}{2\left(a-b+2\right)}\)
\(=\dfrac{\left(a-b+2\right)\left(a+b-2\right)}{2\left(a-b+2\right)}\)
\(=\dfrac{a+b-2}{2}\)
1) Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow3=a+b+c\le3c\Rightarrow1\le c\le2\Rightarrow\left(c-1\right)\left(c-2\right)\le0\)
\(LHS=a^2+b^2+c^2=\left(a^2+2ab+b^2\right)+c^2-2ab\)
\(\le\left(a+b\right)^2+c^2=\left(3-c\right)^2+c^2\)
\(=2\left(c-1\right)\left(c-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và các hoán vị.
2) Đề sai chỗ biểu thức M! Sao lại là M = x2 + y2 + x2 (chỗ mình in đậm)
3) Đề cho x, y, z không âm mà sao lại bắt chứng minh với các biến a, b? Sửa đề lại hết đi rồi mình làm nốt!
Mình xin lỗi vì viết sai nhé, phải là:
1) Cho 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Chứng minh a2 + b2 + c2 ≤ 5
2) Cho -3 ≤ x, y, z ≤ 1, x + y + z = -1. Tính giá trị nhỏ nhất của M = x2 + y2 +z2
3) Cho các số dương a, b có tổng bằng 1. CMR:
Bài 1:
\(M=\left|x+13\right|+64\)
Vì \(\left|x+3\right|\ge0\)
=> \(\left|x+3\right|+64\ge64\)
Vậy GTNN của M là 64 khi x=-13
\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)
Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(A\ge\left|-x-3+x+5\right|=2\)
Vaayj GTNN của A là 2 khi \(-3\le x\le5\)
Bài 2:
a) \(\left(x+10\right)^2=0\)
\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)
b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )
\(\Leftrightarrow x=11\)
Bài 1:
a)Ta thấy: \(\left|x+13\right|\ge0\)
\(\Rightarrow\left|x+13\right|+64\ge64\)
\(\Rightarrow M\ge64\)
Dấu = khi x=-13
b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)
Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)
\(\Rightarrow A\ge2\)
Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)
\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)
Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs
a.
\(Q=x^2+2y^2+2xy-2y+2015=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+2014=\left(x+y\right)^2+\left(x-1\right)^2+2014\ge2014\)
''='' xảy ra khi: \(\left\{{}\begin{matrix}x=-y\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy \(Q_{min}=2014\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
b. vào câu hỏi tt hoặc sớt gg sẽ có
1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)
a, Min=-3 khi x=0
b, Min=9/16 khi x=-1/2
c,Min=0 khi x=1
cái phần a với phần c nhìn cái là ra vì mũ chắn luôn dương