Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{12x^2-6x+4}{x^2+1}=\frac{\left(9x^2-6x+1\right)+3\left(x^2+1\right)}{x^2+1}=\frac{\left(3x-1\right)^2}{x^2+1}+3\ge3\forall x\)
Dấu "=" xảy ra khi: \(3x-1=0\Rightarrow x=\frac{1}{3}\)
Vậy \(P_{min}=3\Leftrightarrow x=\frac{1}{3}\)
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
\(P=\frac{12x^2-6x+4}{x^2+1}=3+\frac{9x^2-6x+1}{x^2+1}\)
\(=3+\frac{\left(3x-1\right)^2}{x^2+1}\ge3\)
Vậy GTNN là 3 đạt được khi x = \(\frac{1}{3}\)
ĐKXĐ: x2 khác 0=> x khác 0
A=(x2-4x+4+5x2)/(x2)
=[(x-2)2+5x2)/(x2)
=(x-2)2/(x2)+(5x2)/(x2)
=(x-2)2/(x2)+5
Vì B= (x-2)2/x2 >=0 => Bmin=0 =>x=2(t/m)
=>Amin=0+5=5 <=>x=2
vậy..................
6x^2-4x+4=5x^2+x^2-4x-4
6x^2-4x+4/x^2=5x^2+x^2-4x+4/x^2=5x^2/x^2 +(x-2)^2/x^2= 5+ (x-2)^2/x^2
do (x-2)^2/x^2 >= 0 với mọi x
nên 5+ (x-2)^2/x^2 >= 5
GTNN là 5 khi (x-2)^2/x^2 = 0 rồi cậu giải ra tìm x ý
À Sai rồi Bạn Đúng nà =))
P=\(\frac{\left(3x^2+3\right)+\left(9x^2-6x+1\right)}{X^2+1}\)
P=\(\frac{3\left(X^2+1\right)}{X^2+1}+\frac{\left(3x-1\right)^2}{X^2+1}\)
P=\(3+\frac{\left(3x-1\right)^2}{X^2+1}\)
P\(\ge3\)