K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

x^2-2xy+6^2-12x+2y+45   =  x^2-2x(y+6)^2-(y+6)^2+6y^2+2y+45=(x-y-6)^2-y^2-12y-36+6y^2+2y+45=(x-y-6)^2+5y^2-10y+9=(x-y-6)^2+5(y^2-2y+1)+4=(x-y-6)^2+5(y-1)^2+4suy ra min=4 va(x,y)=(7,1)

23 tháng 2 2016

\(\left(2x-5\right)^2<\left(2x-1\right)\left(2x+1\right)-\frac{5}{4}\Leftrightarrow4x^2-20x+25<4x^2-1-\frac{5}{4}\)

<=>-20x+25<-9/4

<=>-20x<-109/4

<=>x>109/80=1,3625

Vậy giá trị x cần tìm là: 2

24 tháng 2 2016

khó nghĩ mãi vẫn chưa ra

24 tháng 2 2016

A=(x^2-6x+1)/(x^2+x+1)

Ax^2+Ax+A=x^2-6X+1

x^2(A-1)+x(A+6)+A-1=0

delta=b^2-4ac=(A+6)^2-4(A-1)^2>=0

=>A^2+12A+36-4A^2+8A-4>=0

=>-3A^2+20A+32>=0

=>(8-A)(3A+4)>=0

=>-4/3<=A<=8

=> GTLN A=8

19 tháng 2 2016

\(A=\left(2x-4\right)^2-4\left|4-2x\right|+1986=\left(2x-4\right)^2-4\left|2x-4\right|+1986\)

Ta thấy: \(\left|2x-4\right|^2=\left(2x-4\right)^2\)

Đặt t=|2x-4| ta được: t2=(2x-4)2

Suy ra: A=t2-4t+1986=t2-4t+4+1982

=(t-2)2+1982 \(\ge\)1982 (với mọi x)

Dấu "=" xảy ra khi: t=2

<=>|2x-4|=2

Với x\(\ge\)0 ta được: 2x-4=2 <=> x=3

Với x<0 ta được: 4-2x=-2 <=> x=3 (loại)

Vậy GTNN của A là 1982 tại x=3

 

20 tháng 9 2016

3 nhe

23 tháng 2 2016

A B C H

Kẻ đường cao AH.

Ta có : góc B=2 góc C 

Mà góc B =góc HAC(cùng phụ với góc BAH)

=>góc HAC=2góc C

Vì góc HAC+góc C=90 độ (tam giác AHC vuông tại H)

=>2 góc C+góc C=90 độ

=>3 góc C=90 độ

=>góc C=30 độ

=>góc HAC=60 độ

Mà tam giác AHC vuông tại H nên: AHC là nữa tam giác đều

=>AH=AC/2=8/2=4 cm

Áp dụng định lí py-ta-go lần lượt vào 2 tam giác vuông: tam giác ABH và tam giác AHC

(bạn tự tính tìm ra BH và HC)

Tính ra: BH=\(\frac{4\sqrt{39}}{5}\)cm;HC=\(4\sqrt{3}\)cm

=>BC=BH+HC=\(\frac{4\sqrt{39}+20\sqrt{3}}{5}\)cm

23 tháng 2 2016

bạn học lớp mấy vậy

20 tháng 2 2017

\(P=\left(4a^2+b^2+4ab-12a-6b+9\right)+\left(3b^2-6b+3\right)\)

\(P=\left(2a+b-3\right)^2+3\left(b-1\right)^2\ge0\)

Đẳng thức xẩy ra khi: \(\left\{\begin{matrix}\left(b-1\right)=0\\2a+b-3=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}b=1\\a=1\end{matrix}\right.\)

Kết luận: GTNN P=0 khi a=b=1

20 tháng 2 2016

[(4a^2 - 12a + 9) + 2b(2a - 3) + b^2] + 3b^2 - 6b + 3

= (2a - 3 + b)^2 + 3(b-1)^2

=> P nhỏ nhất = 0 khi (2a - 3 + b) = 3(b-1) = 0

tick cho mk nhaeoeo