Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(-x+y-3\right)^4\ge0\)
\(\left(x-2y\right)^2\ge0\)
\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)
Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)
nên : * \(-x+y-3=0\)và \(x-2y=0\)
\(\Rightarrow y-x=3\)vs \(x=2y\)
\(\Rightarrow x=y-3\)(1) vs \(x=2y\)(2)
Từ (1) vs (2), ta có : \(y-3=2y\)
\(\Rightarrow y=3\)
\(\Rightarrow x=y-3=3-3=0\)
\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.
\(A=4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\)
Ta có:
\(4x\left(x+y-2\right)^2\ge0\)
\(\left|2y-3\right|\ge0\)
\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|\ge0\)
\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\ge1,5\)
Dấu = xảy ra khi : \(x+y-2=0\Leftrightarrow x+y=2\)
\(2y-3=0\Leftrightarrow y=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)
Vậy .....................
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
P >= 0
Dấu "=" xảy ra <=> x-2y=0 và y-2012=0
<=> x=4024 và y=2012
Vậy GTNN của P = 0 <=> x = 4024 và y = 2012
k mk nha
a)Từ giả thiết suy ra\(\hept{\begin{cases}x+2y=0\\y-1=0\\x+t=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2y\\y=1\\x=-t\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=1\\t=2\end{cases}}}\)
\(\Rightarrow A=x+2y+3t\)
\(=-2+2+6\)
\(=6\)
b)\(x^2\left(x^2-4\right)=3\left(x^2-4\right)\)
\(\Rightarrow\left(x^2-4\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-2\right)\left(x^2-3\right)=0\)
\(\Rightarrow x=2;-2\)
Nếu bạn học căn bậc hai rồi thì x còn bằng\(\sqrt{3};-\sqrt{3}\)
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
1. Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\) ( vì \(a+b+c=1\) )
Do đó \(\left(x+y+z\right)^2=\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)( vì \(a^2+b^2+c^2=1\) ).
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
2. Đặt \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\dfrac{a+b}{10}=\dfrac{a-2b}{7}\) và \(a^2b^2=81\)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\) __(1)__
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\)__(2)__
Từ (1) và (2) suy ra \(\dfrac{a}{9}=b\Rightarrow a=9b\)
Do \(a^2b^2=81\) nên \(\left(9b\right)^2.b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\) ( vì \(b\ge0\) )
Suy ra: a = 9.1 = 9
Ta có: \(x^2=9\) và \(y^2=1\). Suy ra: \(x=\pm3,y=\pm1\)