Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
bạn ghi sai đề rồi phải là - 2y mới làm dc nha
\(B=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(B=\left(x+y-1\right)^2+x^2+1\ge1\)
Min của B = 1 khi x+y -1=0,x^2=0
=> x+y= 1 , x=0
=> x=0,y=1
Ung hộ mình nha
\(D=x^2+2xy+y^2+x^2-2x+2y+2\)
\(=\left(x+y\right)^2+x^2-2x+2y+2\)
Đến đây thì dễ rồi nhá !!!!
\(4x^2+y^2-2xy-2x+2y=\left(x^2+y^2+1-2xy-2x+2y\right)+3x^2.\)
\(=\left(x-y-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\3x^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
\(D=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+x^2-4x+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\)
Ta thấy : \(\left(x+y+1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x,y\)
hay : \(D\ge-3\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy : min \(D=-3\) tại \(x=1,y=2\)
Đạt sai ở chỗ dấu bằng xảy ra nhé em!
\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-3\\x=2\end{cases}}\)
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
C = 2x2 + 2xy + y2 - 2x -2y +2
= x2 + 2x(y - 1) + (y - 1)2 + x2 + 1
= (x + y - 1)2 + x2 + 1
Tới đây tự làm