Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất
\(\Rightarrow\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7
Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)
Ta có: \(\left|x+2,8\right|=3,5\)
\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)
Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0
a)
Để A có giá trị nhỏ nhất
=> | x + 2,8| -9,8 có giá trí nhỏ nhất
=> | x + 2,8| có giá trị nhỏ nhất
mà \(\left|x+2,8\right|\ge0\)
=> x + 2,8 = 0
=> x = -2,8
=> Max A = | -2,8+2,8| -9,8 = 0 -9,8 = -9,8
b) không tìm được giá trị lớn nhất của B
A = 1,7 + |3,4 - x|
Ta có: |3,4 - x| \(\ge\)0 \(\forall\)x
=> 1,7 + |3,4 - x| \(\ge\)1,7 \(\forall\)x
Dấu "=" xảy ra <=> 3,4 - x = 0 <=> x = 3,4
vậy MinA = 1,7 tại x = 3,4
B = |x + 2,8| - 3,5 (xlđ)
Ta có: |x + 2,7| \(\ge\)0 \(\forall\)x
=> |x + 2,8| - 3,5 \(\ge\)-3,5 \(\forall\)x
Dấu "=" xảy ra <=> x + 2,8 = 0 <=> x = -2,8
Vậy MinB = -3,5 tại x = -2,8
C = |x - 4/7| - 1/2
Ta có: |x - 4/7| \(\ge\)0 \(\forall\)x
=> |x - 4/7| -1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x -4/7 = 0 <=> x = 4/7
vậy Min C = -1/2 tại x = 4/7
Ta có: \(|x+2,8|\ge0\)
\(\Rightarrow|x+2,8|-7,9\ge-7,9\)
Dấu ''='' xảy ra khi \(x+2,8=0\)
\(\Rightarrow x=-2,8\)
Vậy gtnn của biểu thức B là -7,9 khi x=-2,8
Vì \(-|x+5|\le0;\forall x\)
\(\Rightarrow3,5-|x+5|\le3,5-0;\forall x\)
\(\Rightarrow\frac{1}{3,5-|x+5|}\ge\frac{1}{3,5};\forall x\)
Hay \(E\ge\frac{1}{3,5};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x+5|=0\)
\(\Leftrightarrow x=-5\)
Vậy MIN \(E=\frac{1}{3,5}\Leftrightarrow x=-5\)
a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)
Dấu "=" xảy ra "=" |x| = 0 <=> x = 0
Vậy Amin = 6/13 khi và chỉ khi x = 0
b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)
Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8
Vậy Bmin = -7,9 khi và chỉ khi x = -2,8
c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)
Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5
Vậy Cmin = -5,7 khi và chỉ khi x = -1,5
-|x+5|<=0 với mọi x
=>3,5-|x+5|<=3,5
=>E>=1/3,5=1:7/2=2/7
dấu "=" xảy ra khi và chỉ khi x+5=0
=>x=-5
vậy GTNN của E=2/7 tại x=-5
Bài giải
\(B=\left|x+2,8\right|-3,5\ge-3,5\forall x\)
Dấu " = " xảy ra khi : \(\left|x+2,8\right|=0\text{ }\Rightarrow\text{ }x=-2,8\)
Vậy \(Min_B=-3,5\text{ khi }x=-2,8\)
B = | x + 2, 8 | - 3, 5
Ta có | x + 2, 8 | ≥ 0 ∀ x => | x + 2, 8 | - 3, 5 ≥ -3, 5
Đẳng thức xảy ra <=> x + 2, 8 = 0 => x = -2, 8
=> MinB = -3, 5 <=> x = -2, 8