K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

a) Ta có :

\(A=5x^2-10x+3\)

\(A=5\times\left(x^2-2x+1\right)-2\)

\(A=5\times\left(x-1\right)^2-2\)

Mà \(5\times\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi:

\(x-1=0\Leftrightarrow x=1\)

Vậy \(MinA=-2\Leftrightarrow x-1\)

27 tháng 3 2018

b) 

\(B=2x^2+8x+y^2-10y+43\)

\(B=2\times\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(B=2\times\left(x+2\right)^2+\left(y-5\right)^2+10\)

Mà \(\left(x+2\right)^2\ge0\forall x\Leftrightarrow2\times\left(x+2\right)^2\ge0\forall x\)

       \(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow B\ge10\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+2=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)

Vậy \(MinB=10\Leftrightarrow\left(x;y\right)=\left(-2;5\right)\)

4 tháng 10 2018

mk lm mẫu cho bạn 1 phần nhé

a) \(A=3x^2+y^2+10x-2xy+26\)

\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)

\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)

Dấu "=" xảy ra <=>  \(x=y=-2,5\)

Vậy MIN A = 13,5  khi  x = y = - 2,5

4 tháng 10 2018

Cảm ơn Đường Quỳnh Giang nhiều nhé😊

11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)

5 tháng 11 2017

A = 2.(x^2-4x+4) - 18 = 2.(x-2)^2 - 18 >= -18

Dấu "=" xảy ra <=> x-2 = 0 <=> x=2 

Vậy Min A = -18 <=> x=2