K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2x2+y2+2xy+2y+4x+5

=x2+(2xy+2y)+y2+x2+4x+5

=(x2+2x+1)+2y(x+1)+y2+x2+4x-2x+5-1

=(x+1)2+2y(x+1)+y2+x2+2x+1+3

=(x+1+y)2+(x+1)2+3>(=)3

dấu bằng xảy ra khi x+1+y=x+1=0

=>x=-1;y=0

Vậy Min A=3 khi x=-1;y=0

9 tháng 7 2016

A = x2 + y2 + 1 + 2x+ 2y + 2xy + x2 +2x + 1 +3

A = (x + y + 1)2 +(x + 1)2 + 3

Dấu = xảy ra khi : (x + y + 1)2 = 0

                           (x + 1)2 = 0

<=> x = -2

       y = 1

Vậy A min = 3 khi x = -2 và y = 1 ♪♫ 

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

16 tháng 3 2017

\(A=2x^2+y^2-2xy+4x+2y+5\)

\(A=\left(x^2+6x+9\right)+\left(y^2-2xy-2y+x^2-2x+1\right)-5\)

\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x^2-2x+1\right)\right]-5\)

\(A=\left(x^2+6x+9\right)+\left[y^2-2y\left(x-1\right)+\left(x-1\right)^2\right]-5\)

\(A=\left(x+3\right)^2+\left(y-x+1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=-3 và y=-4

16 tháng 3 2017

\(A=2x^2+y^2-2xy+4x+2y+5\)

=> \(A=y^2-2y\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)^2+2x^2+4x+5\)

=> \(A=\left(y-x+1\right)^2-x^2+2x-1+2x^2+4x+5\)

=> \(A=\left(y-x+1\right)^2-x^2+6x+4\)

=> \(A=\left(y-x+1\right)^2-\left(x^2-2.x.3+9\right)+13\)

=> \(A=\left(y-x+1\right)^2-\left(x-3\right)^2+13\)

Có \(\left(y-x+1\right)^2\ge0\)

\(\left(x-3\right)^2\ge0\)

=> \(\left(y-x+1\right)^2-\left(x-3\right)^2+13\ge13\)

=> \(A\ge13\)

Vậy Amin = 13 <=> \(\hept{\begin{cases}y-x+1=0\\x-3=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

22 tháng 11 2019

Ta có:

A = 2x2 + 2xy + y2 - 2x + 2y + 2

A = (x2 + 2xy + y2) + 2(x + y) + 1 + (x2 - 4x + 4) - 3

A = (x + y)2 + 2(x + y) + 1 + (x - 2)2 - 3

A = (x + y + 1)2 + (x - 2)2 - 3 \(\ge\)-3 \(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=-x-1\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=-2-1=-3\\x=2\end{cases}}\)

Vậy MinA = -3 <=> x = 2 và y = -3

\(2x^2+2xy+y^2-2x+2y+\)\(2\)

\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+2\right)-1\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-1\)

Ta thấy \(\left(x+y+1\right)^2\ge0\)     \(\forall x,y\)

             \(\left(x-2\right)^2\ge0\)            \(\forall x\)

=> \(\left(x+y+1\right)^2+\left(x-2\right)^2\ge0\)     \(\forall x,y\)

=> \(\left(x+y+1\right)^2+\left(x-2\right)^2-1\ge-1\)

hay \(A\ge-1\)

\(MinA=-1\)\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

9 tháng 10 2016

Ta có :

\(x^2+y^2+2x+2y+2xy+5\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\)

Đặt x+y=a

Biểu thức trở thành :

\(a^2+2a+5\)

\(=a^2+2a+1+4\)

\(=\left(a+1\right)^2+4\)

Vì \(\left(a+1\right)^2\ge0\)

\(\Rightarrow\left(a+1\right)^2+4\ge4\)

Dấu " = " xảy ra khi a + 1 = 0

<=> x+y+1=0

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0

9 tháng 10 2016

 x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN=4 khi (x;y)={(7;1)} 

22 tháng 10 2020

\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)

\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)

Đẳng thức xảy ra khi x = -y

15 tháng 3 2017

\(A=x^2-2xy+y^2+x^2+4x+2y+5\)

\(A=\left(x-y\right)^2-2\left(x-y\right)+x^2+6x+5\)

\(A=\left(x-y\right)^2-2\left(x-y\right).1+1^2+x^2+6x+4\)

\(A=\left(x-y-1\right)^2+\left(x+3\right)^2-5\)

Vậy: MinA = -5 khi............

11 tháng 3 2017

Amin=-5 at x=-3 ; y=-4

1 tháng 10 2017

Ta có : \(x^2+y^2-2x+4y+1\)

\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)

\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)

Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)

Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)

Vậy \(A_{min}=-4\) khi x = 1 và y = -2