K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

Tham khảo nha nhóc 

https://olm.vn/hoi-dap/detail/223396249611.html

Tương tự à 

19 tháng 6 2019

Áp dụng BĐT \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

\(\Rightarrow A=\left|x+2018\right|+\left|2019-x\right|\ge\left|\left(x+2018\right)+\left(2019-x\right)\right|=4037\)

\(\Rightarrow A_{min}=4037\)(Dấu "="\(\Leftrightarrow x\le2019\))

10 tháng 2 2019

Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình

23 tháng 10 2018

Vì \(\left|x-2019\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy Amin = 2018 <=> x = 2019

18 tháng 1 2019

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

18 tháng 1 2019

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

18 tháng 3 2018

a) M=2018+|1-2x|

nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018

                    dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2

vậy giá trị nhỏ nhất của M=2018<=>x=1/2

b)N=2018-(1-2x)^2018

nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018

dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2

vậy giá trị lớn nhất của N=2018<=>x=1/2

c)P=7+|x-1|+|2-x|

áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có

P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8

dấu "=" xảy ra <=>(x-1). (2-x)=0

<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2

vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2

a)\(2019-\left|x-2019\right|=x\)

\(\Rightarrow2019-x=\left|x-2019\right|\)

=>\(\left|x-2019\right|=-\left(x-2019\right)\)

=>\(x-2019\le0\)

=>\(x\le2019\)

b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)

        \(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)

mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)

6 tháng 11 2019

a, Ta có:

\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)

Xét x<2019 thì |x-2019|=-x+2019

Khi đó: 2019-(-x+2019)=x

\(\Leftrightarrow\)-x+2019=2019-x

\(\Leftrightarrow\)-x+2019+x=2019

\(\Leftrightarrow\)0x+2019=2019

\(\Leftrightarrow\)0x=0     (thỏa mãn)

Xét 2019\(\le\)x thì |x-2019|=x-2019

Khi đó 2019-(x-2019)=x

\(\Leftrightarrow\)2019-x+2019=x

\(\Leftrightarrow\)4038-x=x

\(\Leftrightarrow\)4038=2x

\(\Leftrightarrow\)x=2019(thỏa mãn)

Vậy .......................................................!!!