Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
= x\(^2\)-2.\(\dfrac{5}{2}\)x+\(\dfrac{25}{4}\)-\(\dfrac{13}{4}\)
= (x-\(\dfrac{5}{2}\))\(^2\)-\(\dfrac{13}{4}\)lớn hơn hoặc bằng -\(\dfrac{13}{4}\) với mọi x
=> min= -\(\dfrac{13}{4}\) <=> x = 5/2
5.
= 2( x\(^2\)-\(\dfrac{5}{2}\)x-\(\dfrac{1}{2}\))
=2( x\(^2\)-2.\(\dfrac{5}{4}\)+\(\dfrac{25}{4}\)-\(\dfrac{27}{4}\))
=2( x-\(\dfrac{5}{4}\))\(^2\)-\(\dfrac{27}{2}\) lớn hơn hoặc bằng -27/2 với mọi x
vậy min = -\(\dfrac{27}{2}\) <=> x= 5/4
1: \(=x^2+x+5=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=-1/2
2: \(=-\left(x^2+4x-9\right)\)
\(=-\left(x^2+4x+4-13\right)\)
\(=-\left(x+2\right)^2+13\le13\)
Dấu '=' xảy ra khi x=-2
3: \(=x^2-4x+4+y^2+2y+1+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2 và y=-1
\(A=36-3x+\dfrac{1}{2}x^2=\dfrac{1}{2}\left(x^2-6x+72\right)\)
\(=\dfrac{1}{2}\left[\left(x^2-6x+9\right)+63\right]=\dfrac{1}{2}\left[\left(x-3\right)^2+63\right]\)
Có: \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+63\ge63\)
\(\dfrac{1}{2}\left[\left(x-3\right)^2+63\right]\ge\dfrac{1}{2}\cdot63=\dfrac{63}{2}\)
Dấu ''='' xảy ra khi x = 3
Vậy \(MIN_A=\dfrac{63}{2}\Leftrightarrow x=3\)
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)