K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

giá trị nhỏ nhất của N là 11.

k mình nha

26 tháng 12 2016

Ta có :

\(\left(x-1\right)\left(x-3\right)+11\)

\(=\left[\left(x-2\right)+1\right]\left[\left(x-2\right)-1\right]+11\)

\(=\left(x-2\right)^2-1^2+11\)

\(=\left(x-2\right)^2+10\ge0+10=10\)

\(\Rightarrow Min_N=10\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy ...

25 tháng 12 2016

N=x^2-3x-x+3+11=x^2-4x+4+10=(x-2)^2+10

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+10\ge10\Rightarrow N_{min}=10\)

Đẳng thức khi x=2

26 tháng 12 2016

ta có:(x-1)(x-3)+11

(x-1) lớn hơn hoặc bằng 1

---->x=1 ----->(x-1)(x-3)=0

0+11=11 --->x=1,(x-1)(x-3)+11 = 11

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

25 tháng 2 2019

A = 130 

câu b:(x-1)(x+2)(x+3)(x+6) 
= (x-1)(x+6)(x+2)(x+3) 
= (x.x + 5.x - 6)(x.x + 5.x + 6) 
đặt x.x + 5.x = t 
=> (t -6)(t+6) 
= t.t - 36 
ta có: 
t.t >= 0 
suy ra t.t - 36 >= -36 
vậy min = -36 
dấu "=" xảy ra chỉ khi t.t = 0 
chỉ khi x.x + 5.x = 0 
chỉ khi x=0 hoặc x=-5

a) Ta có: A= 4x^2 + 4x + 11 = 4x^2 + 4x + 1 + 10

= (2x+1)^2 + 10 >= 10. A đạt giá trị nhỏ nhất = 10 khi x=-1/2 

12 tháng 10 2018

Mk lm câu c nhé, câu a và b bn tham khảo của ngô thế trường

\(c,C=x^2-2x+y^2-4y+7\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

\(2>0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y-2\right)^2=0\Rightarrow y=2\end{cases}}\)

Vậy \(minC=2\Leftrightarrow x=1;y=2\)

hok tốt!

18 tháng 4 2018

do \(\left(x-2\right)^2\ge o\forall x\)

\(\Rightarrow\left(x-2\right)^2+5\ge5\)

\(\Rightarrow\frac{6}{\left(x-2\right)^2+5}\ge\frac{6}{5}\)

Suy ra \(\frac{6}{\left(x-2\right)^2+5}\)đạt giá trị nhỏ nhất là \(\frac{6}{5}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy

18 tháng 4 2018

cảm ơn bạn nhiu