Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)
Ta có\(A\ge0+0+0=0\)
Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)
Thay (4) vào (3)
\(\Rightarrow10k14k+14k15k+10k15k=2000\)
\(\Rightarrow140k^2+210k^2+150k^2=2000\)
\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
Lần lượt thay K ta tìm đc các giá trị của x,y,z
Vậy ...
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
- Vì \(\left|x-\frac{1}{2}\right|\ge0\)
=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)
A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)
=>\(\left|x-\frac{1}{2}\right|=0\)
=>\(x-\frac{1}{2}=0\)
=>x=\(\frac{1}{2}\)
Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)
- Vì \(\left|2x+4\right|\ge0\)
=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)
B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)
<=>|2x+4|=0
<=>2x+4=0
<=>2x=-4
<=>x=-2
Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2
A=1.2.3+2.3.4+3.4.5+...+98.99.100
Khi \(|x|>3:M=\frac{6}{|x|-3}>0\)
Khi \(0\le|x|< 3\Leftrightarrow-3\le|x|-3< 0:-6\le M=\frac{6}{|x|-3}\le-2\)( vì \(x\in Z\))
Vậy GTNN của M là -6 khi x = 2 hoặc x = -2.