Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh Cái này :
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) với \(x;y>0\)
Quy đòng chuyển vế sẽ tạo thành lũy thừa bậc 2
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK
1. Để \(A_{min}\)thì \(x^4_{min}\)và \(2.x^2_{min}\) => \(x_{min}\) => \(x=0\)
Thay x vào ta có:\(A_{min}=0^4+2.0^2-7\)
\(A_{min}=0+0-7\)
\(A_{min}=-7\)
2. Ta có điểm M(1;5) => y=5;x=1
Thay x=1;y=5 vào ta có: \(5=a.1\)
=> a=5
4. Ta có: \(\frac{4x-9}{3x+y}-\frac{4y+9}{3y+x}=\frac{4x-\left(x-y\right)}{3x+y}-\frac{4y+\left(x-y\right)}{3y+x}\)
\(=\frac{4x-x+y}{3x+y}-\frac{4y+x-y}{3y+x}\)
\(=\frac{3x+y}{3x+y}-\frac{3y+x}{3y+x}\)
\(=1-1\)
\(=0\)
ban co bi gi ko lam thi phai cho mot it $ chu neu ko con lau ma lam cho
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2