Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{\sqrt{2x-5}-3}{\sqrt{2x-5}+1}=\frac{\sqrt{2x-5}+1-4}{\sqrt{2x-5}+1}=1-\frac{4}{\sqrt{2x-5}+1}\ge1-\frac{4}{1}\)
Dấu = xảy ra khi \(\sqrt{2x-5}=0\)
\(\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
Vậy...
\(M=\frac{\sqrt{2x-5}-3}{1+\sqrt{2x-5}}=1-\frac{4}{1+\sqrt{2x-5}}\)
\(1+\sqrt{2x-5}\ge1\left(\forall x\right)\Rightarrow\frac{4}{1+\sqrt{2x-5}}\le4\left(\forall x\right)\)
\(\Rightarrow\frac{-4}{1+\sqrt{2x-5}}\ge-4\forall x\Rightarrow M=1-\frac{4}{1+\sqrt{2x-5}}\ge-3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\sqrt{2x-5}=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
Vậy GTNN của M là -3 khi x = 2,5
Ta có: (2x+1)^2 lớn hơn hoặc bằng 0 suy ra (2x+1)^2+4 lớn hơn hoặc bằng 0 suy ra căn (2x+1)+4 lớn hơn hoặc bằng 0
Lại có:|4y^2-1|lớn hơn hoặc bằng 0 suy ra 3.|4y^2-1| lớn hơn hoặc bằng 0
nên GTNN của A =5 khi và chỉ khi (2x+1)^2+4=0 và 4y^2-1=0
Với (2x-1)^2-4=0 suy ra (2x+1)^2=-4 suy ra 2x+2= -2 hoặc 2. Nếu 2x+1=-2 suy ra x=-3/2; nếu 2x+1=2 thì x=1/2
Với 4y^2-1=0 suy ra 4y^2=1 suy ra y^2=1/4 suy ra y=1/2 và y=-1/2
giá trị nhỏ nhất là 10 đạt đc khi x = 0,5 và y = 0
g
\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)
Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN
=> \(\left(x+1\right)^2+3\)(*) đạt GTNN
\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)
=> Min(*) = 3 <=> x + 1 = 0 => x = -1
=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1
Mình không chắc nha -.-
\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)
Để M đạt GTLN => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN
Hay \(x^2+2x+4\)(*) đạt GTNN
Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)
Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)
Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1
Suy ra GTLN (**) = 52/3 khi x = -1
Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1
\(\frac{1}{3}-|\frac{5}{4}-2x|=\frac{1}{4}\)
\(\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}Th1:\frac{5}{4}-2x=\frac{7}{12}\\Th2:\frac{5}{4}-2x=-\frac{7}{12}\end{cases}}\)
\(\Leftrightarrow Th1:\frac{5}{4}-2x=\frac{7}{12}\) \(\Leftrightarrow Th2:\frac{5}{4}-2x=-\frac{7}{12}\)
\(\Leftrightarrow2x=\frac{7}{12}+\frac{5}{4}\) \(\Leftrightarrow2x=-\frac{7}{12}+\frac{5}{4}\)
\(\Leftrightarrow2x=\frac{11}{6}\) \(\Leftrightarrow2x=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{11}{12}\) \(\Leftrightarrow x=\frac{1}{3}\)
P/s : Mình làm bừa ạ nếu kh đúng xin mọi người chỉ thêm ~~
Trước hết bằng phép biến đổi tương đương ; ta chứng minh bất đẳng thức phụ sau:
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}...\)
Biểu diễn:
\(y=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-2x+2}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{9}{4}}+\sqrt{\left(1-x\right)^2+1}\right)\)
\(\ge\sqrt{2}\sqrt{\left(x-\frac{1}{2}+1-x\right)^2+\left(\frac{3}{2}+1\right)^2}=\sqrt{13}.\)
Vậy giá trị nhỏ nhất của \(y=\sqrt{13}\Leftrightarrow x=\frac{4}{5}.\)