K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

\(A=2x-2x^2-5\)

   \(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\le-\frac{9}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x-\frac{1}{2}=0\)

                                                  \(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_A=-\frac{9}{2}\) khi và chỉ khi \(x=\frac{1}{2}\)

 

16 tháng 4 2019

a) Đặt \(A=x^2-2x+5\)

                \(=\left(x-1\right)^2+4\)

Ta thấy \(\left(x-1\right)^2\ge0\forall x\)

  \(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)

 hay \(A\ge4\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)

                         \(\Leftrightarrow x=1\)

Vậy Min A=4 \(\Leftrightarrow x=1\)

16 tháng 4 2019

a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu " = " xảy ra khi x - 1 = 0 hay x = 1

Vậy GTNN là 4 khi x = 1 .

b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)

Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .

Vậy GTLN là 13 khi x = -2 .

c , mik ko bt làm

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4

18 tháng 5 2016

\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)

\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)

\(M=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\) với mọi x

=>\(\left(x+1\right)^2+1\ge1\) với mọi x

=>GTNN của M là 1

Dấu "=" xảy ra <=> x+1=0<=>x=-1

18 tháng 5 2016

Mmin=1 khi x=-1

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

29 tháng 3 2018

Ta có : 

\(\left(2x-1\right)^4\ge0\forall x\)

\(\Rightarrow5-\left(2x-1\right)^4\le5\forall x\)

Dấu " = " xảy ra 

\(\Leftrightarrow\left(2x-1\right)^4=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(GTLN\)của D là 5  \(\Leftrightarrow x=\frac{1}{2}\)

Tham khảo nha !!! 

29 tháng 3 2018

Cảm ơn bn nha!

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Bài 1:

$2^{x+1}.3^y=12^x=(2^2.3)^x=2^{2x}.3^x$

$\Rightarrow x+1=2x$ và $y=x$

$\Rightarrow x=1$ và $y=x$

$\Rightarrow x=y=1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Bài 2:

a. $P(x)=|2x-6|+|2x-2|=6$

$\Rightarrow 2|x-3|+2|x-1|=6$

$\Rightarrow |x-3|+|x-1|=3(*)$

Nếu $x\geq 3$ thì $(*)$ trở thành:

$x-3+x-1=3$

$\Rightarrow 2x-4=3\Rightarrow x=\frac{7}{2}$ (tm) 

Nếu $3> x\geq 1$ thì $(*)$ trở thành:

$3-x+x-1=3$

$\Rightarrow 2=3$ (vô lý - loại) 

Nếu $x<1$ thì $(*)$ trở thành:

$3-x+1-x=3$

$\Rightarrow 4-2x=3$

$\Rightarrow x=\frac{1}{2}$ (tm) 

Vậy..........

b.

Ta có: $P(x)=2(|x-1|+|x-3|)=2(|x-1|+|3-x|)\geq 2|x-1+3-x|=2.2=4$

Vậy $P(x)_{\min}=4$

Giá trị này đạt tại $(x-1)(3-x)\geq 0$

$\Rightarrow 1\leq x\leq 3$

29 tháng 8 2016

Ta có: 2x2 \(\ge\)0 với mọi x

=>2x2-15 \(\ge\)-15

Dấu "=" xảy ra khi 2x2=0=>x=2

Vậy Min 2x2-15 =15 khi x=0