Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(=9x=9.15=135\)
Chả bik x- y= 5 có phải trong đề ko, giờ giải x+y = 3 trước
Ta có x2+y2 + 2xy - 4x - 4y + 1 = (x2+ 2xy + y2) - 4 ( x+y) + 1 = (x+y)^2 - 4(x+y) + 1 (1)
Thay x+y = 3 vào 1, có:
3^2 - 4.3 + 1 = 9-12 + 1 = -2
Vậy GTBT x2+y2 + 2xy - 4x - 4y + 1 vs x+ y = 3 là -2
\(A=3x-x^2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Vậy GTLN của A là \(\frac{9}{4}\)khi x = \(\frac{3}{2}\)
\(B=7-8x-x^2=-\left(x^2+8x+16\right)+23=-\left(x+4\right)^2+23\le23\)
Vậy GTLN của B là 23 khi x = -4
\(C=x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
Vậy GTNN của C là 1 khi x = 10
\(D=3x^2-6x+11=3\left(x^2-2x+1\right)+8=3\left(x-1\right)^2+8\ge8\)
Vậy GTNN của D là 8 khi x = 1
\(a,A=3x-x^2=-x^2+3x=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{9}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
Vậy Max A = 9/4 <=> x = 3/2
\(b,B=7-8x-x^2=-x^2-8x+7=-x^2-2.4x-16+23=-\left(x+4\right)^2+23\ge23\)
Vậy MinB = 23 <=> x = -4
\(c,C=x^2-20x+101=x^2-2.10x+10^2+1=\left(x-10\right)^2+1\ge1\)
Vậy MinC = 1 <=> x = 10
\(d,D=3x^2-6x+11\)
\(D=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2+8=\left(\sqrt{3}x-\sqrt{3}\right)^2+8\ge8\)
Vậy MinD = 8<=> x=1
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)
b: Thay x=1/2 vào A, ta được:
\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)
c: Để A là số nguyên thì \(x-1+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3\right\}\)
\(Taco:\)
\(A=2\left(3x+1\right)\left(x-1\right)-3\left(2x-3\right)\left(x-4\right)\)
\(A=\left(6x+2\right)\left(x-1\right)-\left(6x-9\right)\left(x-4\right)\)
\(A=\left(6x^2-4x-2\right)-\left(6x^2-24x-9x-36\right)\)
\(A=6x^2-4x-2-6x^2+33x+36=29x+34\)
\(b,x=2\Rightarrow A=58+34=92\)
\(A=-20\Leftrightarrow29x=-20-34=-54\Leftrightarrow x=\frac{-54}{29}\)
\(x^2\ge0.\Rightarrow A+x^2=x\left(x+29\right)+34\ge-176,25\)
Dấu "=" xảy ra khi: x(x+29) đạtGTNN
<=> x=-14,5
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1
GTNN D = 5/6
dài quá, nản quá
E = x^2 + x + 1
E = (x^2 + 2x.\(\frac{1}{2}\)+1/4 ) + 3/4
E = (x+ 1/4 )^2 + 3/4
Do ...... ( đến đây bn tự làm nha)
H = ( x-1)^2 + ( x-7)^2
H = x^2 - 2x + 1 + x^2 - 14x + 49
H = 2x^2 - 16x + 50
H = [\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\frac{16}{2.\sqrt{2}}+32\)] + 18
H = ( \(\sqrt{2}x-\frac{16}{2\sqrt{2}}\))2 + 18
.....
D = x^2 -20x + 101
D =( x^2 - 2.x.10 + 100) + 1
D = (x-10) ^2 + 1
....
G = x^2 + 10x + 26 + y^2 + 2y + 2020
G = ( x^2 + 10x + 25) + (y^2+2y+1) + 2020
G = (x+5)^2 + ( y+1)^2 + 2020
....
Có gì ko hiểu hỏi mik
E=X2+2.X.1/2 + (1/2)2-(1/2)2+1
E=(X+1/2)2+3/4 >=3/4
vậy MIN E=3/4 khi x=-1/2
các câu khác phân tích tương tự