K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

\(A=12a-4a^2+3\)

\(A=-\left(4a^2-12a-3\right)\)

\(A=-\left[\left(2a\right)^2-2.2a.3+9-9-3\right]\)

\(A=-\left(2a-3\right)^2+12\)

\(-\left(2a-3\right)^2\le0\) với mọi a

\(\Rightarrow-\left(2a-3\right)^2+12\le12\) với mọi a

\(\Rightarrow Amax=12\Leftrightarrow a=\dfrac{3}{2}\)

19 tháng 9 2018

Bạn ơi bài này tìm min nhé

29 tháng 1 2017

P=4a2+4ab+4b2-12a-12b+12

=[(4a2-12a+9)+2b(2a-3)+b2]+3b2-6b+12

=(2a+b-3)2+3(b-1)2+9

Dấu "=" xảy ra khi b-1=0=> b=1

                        và 2a+b-3=0 => 2a+1-3=0=> a=1

Vậy MinP = 9 <=> a=b=1

                               

Bài 1: 

a: \(A=x^2-30x+225-114=\left(x-15\right)^2-114>=-114\forall x\)

Dấu '=' xảy ra khi x=15

b: \(B=4a^2+4a+1+1=\left(2a+1\right)^2+1>=1\forall a\)

Dấu '=' xảy ra khi a=-1/2

Bài 2: 

a: \(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x=2

7 tháng 3 2017

\(P=4a^2+4ab+4b^2+-12a-12b+12\)

\(=\left(\left(2a^2+4ab+2b^2\right)-8\left(a+b\right)+8\right)+\left(2a^2-4a+2\right)+\left(2b^2-4b+2\right)\)

\(=2\left(a+b-2\right)^2+2\left(a-1\right)^2+2\left(b-1\right)^2\ge0\)

Vậy GTNN của P = 0 khi x = y = 1

24 tháng 1 2017

A=a4-2a3+3a2-4a+5

=a4-2a3+a2+2a2-4a+2+3

=(a2-1)2+2(a-1)2+3 >= 3 với mọi x (do 2 cái ngoặc >= 0)

minA=3,dấu "=" xảy ra <=> a=1

24 tháng 1 2017

bạn viết sai rồi phải là (a2-a)2 chứ

20 tháng 3 2020

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)

22 tháng 3 2020

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.