Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2022-\left|x-9\right|\le2022\)
\(maxM=2022\Leftrightarrow x=9\)
b) \(N=\left|x-2021\right|+2022\ge2022\)
\(minN=2022\Leftrightarrow x=2021\)
\(P=\left(3+x\right)^{2022}+\left|2y-1\right|-5\ge-5\\ P_{min}=-5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(|x-2022|\ge0\) Với mọi x
\(\Rightarrow|x-2022|+5\ge5\)
Vậy Amin = 5
Dấu = xảy ra \(\Leftrightarrow x-20202=0\)
\(\Leftrightarrow x=2022\)
Vậy Amin = 5 \(\Leftrightarrow x=2022\)
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
\(M=\left|x-2021\right|+\left|2022-x\right|\ge\left|x-2021+2022-x\right|=1\\ M_{min}=1\Leftrightarrow\left(x-2021\right)\left(2022-x\right)\ge0\Leftrightarrow2021\le x\le2022\)
M=|x-2|+|2022-x|>=|x-2+2022-x|=2020
Dấu = xảy ra khi 2<=x<=2022
Ta có:\(\left|x-1\right|\ge0\)
\(\left|x-2022\right|\ge0\)
=> \(Min_C=0\)
có cách nào dễ hiểu dành cho học sinh lớp 7 ko anh