K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2016

\(A=x^2-6x+11\)

\(\Leftrightarrow A=x^2-2.3x+9+2\)

\(\Leftrightarrow A=\left(x-3\right)^2+2\ge2\)

\(\Leftrightarrow A_{min}=2\)

\(\Leftrightarrow x-3=0\)

\(x=3\)

20 tháng 10 2015

a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2

b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)

\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)

\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)

Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

12 tháng 1 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

11 tháng 1 2016

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

-x^2+6x-11

=-(x^2-6x+11)

=-(x^2-6x+9+2)

=-(x-3)^2-2<=-2

Dấu = xảy ra khi x=3

10 tháng 7 2018

 Ta có: \(x^2-2x+y^2-4y+7\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì:\(\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy:GTNN của bt là 2 tại x=1,y=2

AH
Akai Haruma
Giáo viên
23 tháng 12 2022

Lời giải:

a.

Tại $x=5$ thì $B=\frac{5+3}{5-2}=\frac{8}{3}$

b.

\(A=\frac{x^2-x+1}{(x-2)(x+2)}+\frac{2(x+2)}{(x-2)(x+2)}-\frac{x-2}{(x-2)(x+2)}=\frac{x^2-x+1+2(x+2)-(x-2)}{(x-2)(x+2)}\)

\(=\frac{x^2+7}{(x-2)(x+2)}\)

c.

\(P=A:B(x+2)=\frac{x^2+7}{(x-2)(x+2)}:\frac{x+3}{x-2}.(x+2)=\frac{x^2+7}{x+3}\)

Áp dụng BĐT Cô-si:

$x^2+1\geq 2|x|\geq 2x$

$\Rightarrow x^2+7\geq 2x+6=2(x+3)$

$\Rightarrow P\geq \frac{2(x+3)}{x+3}=2$
Vậy $P_{\min}=2$. Giá trị này đạt tại $x^2=1\Leftrightarrow x=\pm 1$ (tm)