Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(\left(x+1\right)^2+3\)
ta có: \(\left(x+1\right)^2\) \(\geq\)0 với mọi x
=> \(\left(x+1\right)^2+3\) \(\geq\) \(3\) với mọi x
dấu bằng xảy ra<=>x+1=0
<=>x=1
vậy GTNN của biểu thức \(\left(x+1\right)^2+3\) là \(3\) <=> x= \(-1\)\
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
a, Ta có: \(A=\left|x+2\right|+\left|x-6\right|=\left|x+2\right|+\left|6-x\right|\ge\left|x+2+6-x\right|=8\)
Dấu "=" xảy ra khi \(\left(x+2\right)\left(6-x\right)\ge0\Rightarrow-2\le x\le6\)
Vậy MinA = 8 khi \(-2\le x\le6\)
b, Ta có: \(B=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|7-x\right|\right)+\left(\left|x+2\right|+\left|8-x\right|\right)\)
\(\ge\left|x+5+7-x\right|+\left|x+2+8-x\right|=12+10=22\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)\left(7-x\right)\ge0\\\left(x+2\right)\left(8-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}-5\le x\le7\\-2\le x\le8\end{cases}}\Rightarrow-2\le x\le8}\)
Vậy MinB = 22 khi \(-2\le x\le8\)
c, Ta có: \(C=\left|x-3\right|+\left|x-4\right|+\left|x-5\right|=\left(\left|x-3\right|+\left|5-x\right|\right)+\left|x-4\right|\)
Vì \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\forall x\)
Và \(\left|x-4\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-3\right|+\left|x-5\right|\right)+\left|x-4\right|\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)\left(5-x\right)\ge0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}3\le x\le5\\x=4\end{cases}\Rightarrow}x=4}\)
Vậy MinC = 2 khi x = 4
đặt A = |x + 1| + |x + 3|
ta có A = |x + 1| + |x + 3| = |x + 1| + |-x - 3| > |x + 1 -x - 3| = 2
=> Amin = 2 <=> (x+1)(-x-3) > 0
vậy Amin= 2 <=> -3< x <-1
+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)
\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)
+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)
\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)
Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)
Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)
\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)