K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

\(P\left(x\right)=\frac{2012x+2013\sqrt{1-x^2}+2014}{\sqrt{1-x^2}}=\frac{2012x+2014}{\sqrt{1-x^2}}+\frac{2013\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\frac{2012x+2014}{\sqrt{1-x^2}}+2013=2012+\frac{2012\left(1+x\right)+1-x}{\sqrt{1-x^2}}\)

Áp dụng BĐT AM-GM ta có: 

\(P\left(x\right)\ge2012+\frac{2\sqrt{2012\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}=2012+2\sqrt{2012}\)

19 tháng 10 2017

=\(2013\) \(+\frac{2014+2012x}{\sqrt{1-x^2}}\) =\(\frac{2013\left(1+x\right)+1-x}{\sqrt{1-x^2}}\) \(\ge2013+\frac{2\sqrt{2013\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}=2013+2\sqrt{2013}\)

dau = xay ra khi \(2013\left(1+x\right)=1-x\)

               \(\Leftrightarrow x=-\frac{1001}{1002}\)

min p(x) =\(2013+2\sqrt{2013}\Leftrightarrow x=-\frac{1001}{1002}\)

22 tháng 6 2016

ui mk nhầm chỗ cuối kết quả A=2 nhé

22 tháng 6 2016

bài 1 

a) ĐKXĐ : bạn tự tìm nhé 

b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)

               =\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

               =\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)

              =\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))

              =\(2\sqrt{x^2-1}\)     

31 tháng 8 2017

ĐKXĐ: \(x\ge1\)

\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=|1-\sqrt{x-1}|+|\sqrt{x-1}+1|\)

\(\ge|1-\sqrt{x-1}+\sqrt{x-1}+1|=2\)

Vậy GTNN của A là 2 khi \(1\le x\le2.\)

2 tháng 5 2021

a, Ta có : \(x=25\Rightarrow\sqrt{x}=\sqrt{25}=5\)

\(\Rightarrow Q=\frac{5-1}{5+1}=\frac{4}{6}=\frac{2}{3}\)

b, \(P=\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}-\frac{4}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{4}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1+x-\sqrt{x}+1-4}{\sqrt{x}}=\frac{2x-2}{\sqrt{x}}\)

2 tháng 5 2021

c, Ta có : \(P.Q.\sqrt{x}< 8\)hay \(\frac{2x-2}{\sqrt{x}}.\sqrt{x}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)< 8\)

\(\Leftrightarrow\frac{2\left(x-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< 8\Leftrightarrow2\left(\sqrt{x}-1\right)^2< 8\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2< 4\Leftrightarrow\sqrt{x}-1< 2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)