K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

A= x2+2y2-2xy-2x-2y+1015

A = x2 - 2xy - 2x + y2 + 2y + 1 + y2 - 4y + 4 + 1010 

A = [x2 - 2x(y + 1) + (y+1)2 ]  + (y-2)2 + 1010

A = ( x - y - 1)2 + (y-2)2 + 1010 \(\ge1010\forall x,y\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy MinA = 1010 <=> \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

9 tháng 10 2016

Ta có :

\(x^2+y^2+2x+2y+2xy+5\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\)

Đặt x+y=a

Biểu thức trở thành :

\(a^2+2a+5\)

\(=a^2+2a+1+4\)

\(=\left(a+1\right)^2+4\)

Vì \(\left(a+1\right)^2\ge0\)

\(\Rightarrow\left(a+1\right)^2+4\ge4\)

Dấu " = " xảy ra khi a + 1 = 0

<=> x+y+1=0

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0

9 tháng 10 2016

 x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN=4 khi (x;y)={(7;1)} 

19 tháng 8 2020

Bài làm:

a) \(P=x^2-5x=\left(x^2-5x+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\le-\frac{25}{4}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x=\frac{5}{2}\)

Vậy \(Min_P=-\frac{25}{4}\Leftrightarrow x=\frac{5}{2}\)

19 tháng 8 2020

a) P = x2 - 5x 

         = ( x2 - 5x + 25/4 ) - 25/4

         = ( x - 5/2 )2 - 25/4

( x - 5/2 )2 ≥ 0 ∀ x => ( x - 5/2 )2 - 25/4 ≥ -25/4

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

=> MinF = -25/4 <=> x = 5/2

b) Q = x2 + 2y2 + 2xy - 2x - 6y + 2015 

         = ( x2 + 2xy + y2 - 2x - 2y + 1 ) + ( y2 - 4y + 4 ) + 2010

         = [ ( x + y )2 - 2( x + y ) + 12 ] + ( y - 2 )2 + 2010

         = ( x + y - 1 )2 + ( y - 2 )2 + 2010

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x,y\\\left(y-2\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y-1=0\\y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

=> MinQ = 2010 <=> x = -1 , y = 2

28 tháng 10 2020

Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015

= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 +  2014

= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)

Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3

28 tháng 10 2020

\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)

\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)

hay \(A\ge2014\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)

5 tháng 7 2018

\(K=x^2+2y^2-2xy+2x-6y+8\)

\(K=x^2+2x\left(y-1\right)-2y^2-6y+8\)

\(K=x^2+2x\left(y-1\right)-y^2-2y+1+y^2-4y+4+4\)

\(K=x^2+2x\left(y-1\right)-\left(y-1\right)^2+\left(y-2\right)^2+4\)

\(K=\left(x+y-1\right)^2+\left(y-2\right)^2+4\ge4\forall x;y\)

Dấu "=" xảy ra khi x = -3; y = 4

5 tháng 2 2017

\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)

Amin=4 khi y=1; x=7

22 tháng 10 2019

\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)

\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)

\(Amin=4\)\(khi\)\(y=1;x=7\)

7 tháng 10 2018

\(N=2x^2+y^2+2xy-2x-2y+2011\)

\(=\left(x^2+y^2+2xy\right)-2\left(x+y\right)+1+x^2+2010\)

\(=\left(x+y-1\right)^2+x^2+2010\ge2010\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=0\end{matrix}\right.\)

Vậy Min N là : \(2010\Leftrightarrow x=0;y=1\)

\(P=2x\left(1-x\right)=2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)Dấu " = " xảy ra \(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy Max P là : \(\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(Q=-x^2-4y^2+4x+2y-25\)

\(=-\left(x^2-4x+4\right)-\left(4y^2-2y+\dfrac{1}{4}\right)-\dfrac{83}{4}\)

\(=-\left(x-2\right)^2-\left(2y-\dfrac{1}{2}\right)^2-\dfrac{83}{4}\le\dfrac{83}{4}\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{4}\end{matrix}\right.\)

Vậy Max Q là : \(\dfrac{83}{4}\Leftrightarrow x=2;y=\dfrac{1}{4}\)

7 tháng 10 2018

Mik đánh vội nên nhầm và max là : \(-\dfrac{83}{4}\)

16 tháng 2 2017

Theo bài ra , ta có :

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(\Leftrightarrow A=y^2+2xy+x^2-2y-2x+1+x^2-4x+4+5\)

\(\Leftrightarrow A=\left(y+x\right)^2-2\left(x+y\right)+1+\left(x-2\right)^2+5\)

\(\Leftrightarrow A=\left(y+x-1\right)^2+\left(x-2\right)^2+5\)

\(\left(y+x-1\right)^2\ge0\forall y,x\)

\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(y+x-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(y+x-1\right)^2+\left(x-2\right)^2+5\ge5\forall x,y\)

\(\Rightarrow min_A=5\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{\begin{matrix}y+x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y+x=1\\x=2\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của A = 5 khi và chỉ khi y = -1 và x =2

Chúc bạn học tốt =))ok

16 tháng 2 2017

= 5 nha từ từ r mik làm