K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

a, \(Min_M=6\Leftrightarrow x=1\)

b,\(Min_Q=2002\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

22 tháng 3 2019

a) Để Mmin thì \(\left(x-1\right)^2\) đạt GTNN.

Mà \(\left(x-1\right)^2\ge0\Leftrightarrow\) GTNN của \(\left(x-1\right)^2=0\)

Vậy GTNN của M = 0 + 6 = 6.

b) Để Qmin thì \(\left(x-1\right)^2+\left(y+3\right)^2\) đạt GTNN.

Mà \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\Leftrightarrow\) GTNN của \(\left(x-1\right)^2+\left(y+3\right)^2=0+0=0\)

Vậy GTNN của Q = 0 + 0 + 2002 = 2002.

24 tháng 2 2017

TA CÓ

\(\left(X-1\right)^2\ge0\)VỚI MỌI X \(\in\)R

\(\left(Y+3\right)^2\ge0\)VỚI MỌI Y\(\in\)R

=>\(\left(X-1\right)^2+\left(Y+3\right)^2+2002\ge2002\) VỚI MỌI X,Y \(\in\)R

=>BIỂU THỨC M ĐẠT GIA TRỊ NHỎ NHẤT LÀ 2002 KHI \(\left(X-1\right)^2=0\) VÀ \(\left(Y+3\right)^2=0\)=>X=1;Y=-3

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)

\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)

\(\Rightarrow A_{max}=\frac{3}{4}\)

b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)

30 tháng 11 2018

\(A=\frac{3}{\left(x+2\right)^2+4}\)

Để A max

=>(x+2)^2+4 min

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)

Vậy Min = 4 <=>x=-2

Vậy Max A = 3/4 <=> x=-2

\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)

Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)

\(\Rightarrow B\ge0+0+1=1\)

Vậy MinB = 1<=>x=-1;y=-3

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

10 tháng 12 2021

A,B,C riêng nha

10 tháng 12 2021

A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3

⇒Amin=−3⇒Amin=−3 khi x=2x=2

B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10

⇒Bmin=10⇒Bmin=10 khi x=−12x=−12

C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)

=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36

⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5

D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21

⇒Cmax=21⇒Cmax=21 khi x=−4x=−4

E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5

⇒Emax=5⇒Emax=5 khi x=2

11 tháng 2 2017

1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)

Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ........

2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = 2

Vậy ..........

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)