Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: x2 > 0 và |y - 2| > 0 => ( x2 + |y - 2| ) > 0 => ( x2 + |y - 2| ) + 3 \(\ge\) 0 + 3
=> A đạt giá trị nhỏ nhất = 3
b) T có: |3y - 6| > 0 và |y + 1| > 0 => |3y - 6| + 2 . |y + 1| > 0 => (|3y - 6| + 2 . |y + 1|) - 2015 \(\ge\) 0 - 2015
=> B đạt giá trị nhỏ nhất = - 2015
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Đề GTLN A mình thấy nó sao sao ấy! Cần suy nghĩ thêm. Mà bạn cũng nên xem lại đề =))
\(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\)
Ta có BĐT: Với n chẵn thì: \(a^n\ge0\)
Do vậy,ta có: \(\left(x+2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
Do đó \(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\ge1999\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy \(B_{min}=1999\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
|x-4| bao giờ cũng lớn hơn hoặc bằng 0. Để |x-4| + 2015 có giá trị nhỏ nhất suy ra |x-4|=0 hay x=4
Vậy tại x=4 biểu thức B có giá trị nhỏ nhất
Biểu thức A làm tương tự