K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

\(C=x^2+5y^2-2xy+4y+3\)

\(=x^2+4y^2+y^2-2xy+4y+2+1\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)

Ta có: \(\left(x-y\right)^2\ge0\) ; \(\left(2y+1\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\)

\(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Vậy GTNN của C là 2

Dấu \("="\) xảy ra khi :

\(2y+1=0\Rightarrow2y=0-1=-1\Rightarrow y=\dfrac{-1}{2}\)

hoặc \(x-y=0\)\(\Rightarrow x=y=-\dfrac{1}{2}\)

31 tháng 7 2018

\(C=x^2-2xy+y^2+4y^2+4y+1+2=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu "=" xảy ra khi\(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=\frac{-1}{2}\end{cases}\Leftrightarrow}x=y=\frac{-1}{2}}\)

=x2-2xy+y2+4y2+4y+1+2

=(x-y)2+(2y+1)2+2\(\ge2\)

dấu bằng xảy ra khi x=y=-1/2

24 tháng 12 2019

biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?

2 tháng 7 2018

a, \(A=x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi x=-1/2

Vậy Amin=3/4 khi x=-1/2

b,\(B=2x^2-5x-2\)

\(\Rightarrow2B=4x^2-10x-4=\left(4x^2-10x+\frac{25}{4}\right)-\frac{41}{4}=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\)

Vì \(\left(2x-\frac{5}{2}\right)^2\ge0\Rightarrow2B=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\Rightarrow B\ge-\frac{41}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmin=-41/8 khi x=5/4

c,\(C=x^2+5y^2+2xy-y+3=\left(x^2+2xy+y^2\right)+\left(4y^2-y+\frac{1}{16}\right)+\frac{47}{16}=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\)

\(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(2y-\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2\ge0\)

\(\Rightarrow C=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\ge\frac{47}{16}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{8}\\y=\frac{1}{8}\end{cases}}}\)

Vậy Cmin=47/16 khi x=-1/8,y=1/8

28 tháng 6 2016

a)Ta có: \(A=x^2+5y^2-2xy+4y+3\)\(\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

                    = \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

(Do \(\left(x-y\right)^2\ge0;\left(2y+1\right)^2\ge0\))

Vậy min A=2. Dấu = khi x=y=-1/2

b) Đặt \(t=x^2-2x+1\)

=> \(B=\left(t-1\right)\left(t+1\right)\)=\(t^2-1\)=\(t^2+\left(-1\right)\ge-1\)

Do \(t^2\ge0\)

Vậy min B=-1. Dấu = khi t=0 hay \(x^2-2x+1=0\)

                                          => \(\left(x-1\right)^2=0\)<=> x=1

28 tháng 6 2016

trời ơi ghi cả 1 dãy 

oho

7 tháng 4 2015

\(A=x^2+2xy+2y^2+2x-4y+2013\)

\(=\left(x^2+y^2+1+2x+2y+2xy\right)-1-2y+y^2-4y+2013\)\(=\left(x+y+1\right)^2+\left(y^2-2.y.3+9\right)-9+2012\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\)

mà \(\left(x+y+1\right)^2,\left(y-3\right)^2\ge0\)

\(\Rightarrow A=x^2+2xy+2y^2+2x-4y+2013=\left(x+y+1\right)^2+\left(y-3\right)^2+2003\ge2003\)

\(\Rightarrow Min\left(A\right)=2003\)

17 tháng 10 2016

còn thiếu: khi y=3 và x= -y-1

11 tháng 2 2021

M = 2x2 + 5y2 - 2xy + 1

=> 2M = 4x2 + 10y2 - 4xy + 2

           = (4x2 - 4xy + y2) + 9y2 + 2 

           = (4x - y)2 + (3y)2 + 2 

=> M = \(\frac{\left(4x-y\right)^2}{2}+\frac{\left(3y\right)^2}{2}+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}4x-y=0\\3y=0\end{cases}}\Leftrightarrow x=y=0\)

Vậy Min M = 1 <=> x = y = 0

a,   B=x2+4xy+y2+x2-8x+16+2012

       B=(x+y) 2+(x-4)2+2012

 Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)

b làm tương tự 

c,  9x2+6x+1+y2-4y+4+x2-4xz+4z2=0

     (3x+1)2+(y-4)2+(x-2z)2=0

    Vậy 3x+1=0 => x = -1/3

           y-4=0 => y=4

             x-2z=0  thế x=-1/3 ta được.      -1/3-2z=0 => z = -1/6

Bạn nhớ ghi lại đề minh không ghi đề 

           

a) \(B=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

b)\(C=x^2+5y^2+4xy+2x+2y-7\)

\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)

\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)

\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)

\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)