K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2021

M = |(x - 2020)(x2 - 16)| + 2x(x - 4) + 8(4 - x ) + 2021

=  |(x - 2020)(x2 - 16)| + 2x(x - 4) - 8(x - 4 ) + 2021

=  |(x - 2020)(x2 - 16)| + (x - 4)(2x - 8) + 2021

= |(x - 2020)(x2 - 16)| + 2(x - 4)2 + 2021 

Lại có \(\hept{\begin{cases}\left|\left(x-2020\right)\left(x^2-16\right)\right|\ge0\forall x\\2\left(x-4\right)^2\ge0\forall x\end{cases}}\)

=> |(x - 2020)(x2 - 16) + 2(x - 4)2 + 2021 \(\ge2021\forall x\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2020\right)\left(x^2-16\right)=0\\2\left(x-4\right)^2=0\end{cases}}\)

Khi (x - 2020)(x2 - 16) = 0 

=> \(\orbr{\begin{cases}x-2020=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2020\\x=\pm4\end{cases}}\)(1)

Khi 2(x - 4)2 = 0

=> x -  4 = 0

=> x = 4 (2)

Từ (1) (2) => x = 4 

Vậy Min M = 2021 <=> x = 4

15 tháng 6 2016

a,Ta có:

\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)

b,Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)

15 tháng 6 2016

Câu C sai đề

A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra khi: x=7/12

Vậy GTNN của A là 2004 tại x=7/12

21 tháng 5 2020

Có: \(|x-1|\ge0\)

      \(|x-2|\ge0\)

     .................

      \(|x-2019|\ge0\)

=>  \(A\ge0\)

   Vậy giá trị nhỏ nhất của A là 0

21 tháng 5 2020

Cám ơn bạn nhiều <3

9 tháng 2 2020

Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0

vì vậy min của T =0

9 tháng 2 2020

\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)

\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)

\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)

\(\Rightarrow T\ge|43|\)

\(\Rightarrow T\ge43\)

Vậy \(Min_T=43\)

6 tháng 7 2016

|x+1/2|> hoặc bằng 0(1)

|x+1/3|> hoặc bằng 0(2)

|x+1/4|> hoặc bằng 0(3)

Từ (1),(2)và (3) ta có:|x+1/2|+|x+1/3|+|x+1/4|> hoặc bằng 0 

Nên GTNN của B bằng 0 

khi x \(\in\)-1/2;-1/3;-1/4

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

4 tháng 12 2017

Ta có : \(\left|x-3\right|\ge0\);\(\left|4+x\right|\ge0\);\(\left|x-1\right|\ge0\)

\(\Rightarrow H=\left|3-x\right|+\left|x+4\right|+\left|x-1\right|\)

\(\Rightarrow H\ge3-x+x+4+x-1=6+x\)

Vậy dấu bằng xảy ra khi \(MinH=6+x\)

4 tháng 12 2017

Kểu thế này nè https://olm.vn/hoi-dap/question/825859.html