K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(D=\left|-5x-20\right|+2018\)

Ta có: \(\left|-5x-20\right|\ge0\forall x\)

\(\Rightarrow\)\(\left|-5x-20\right|+2018\ge2018\forall x\)

\(D=2018\Leftrightarrow\left|-5x-20\right|=0\Leftrightarrow x=-4\)

Vậy \(D_{min}=2018\Leftrightarrow x=-4\)

\(F=\left|x+1\right|+2.\left|6,9-3y\right|+38\)

Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\forall x\\2.\left|6,9-3y\right|\ge0\forall y\end{cases}\Rightarrow\left|x+1\right|+2.\left|6,9-3y\right|+38\ge38\forall x;y}\)

\(F=38\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=0\\2.\left|6,9-3y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2,3\end{cases}}\)

\(F_{min}=38\Leftrightarrow x=-1;y=2,3\)

Tham khảo nhé~

26 tháng 7 2018

d/ Vì \(|\)-5x-20\(|\)\(\ge\)0 với mọi x

\(\Rightarrow\)|-5x-20| +2018 \(\ge\)2018

\(\Rightarrow\)D\(\ge\)2018

Dấu "=" xảy ra khi: |-5x-20|=0

\(\Leftrightarrow\)-5x-20=0

\(\Leftrightarrow\)-5x=20

\(\Rightarrow\) x=-4 

Vậy GTNN của D= 2018 khi x=-4

e/ Vì |x+1| \(\ge\) 0 với mọi x

|6.9-3y| \(\ge\) 0 với mọi y

  \(\Rightarrow\) 2|6.9-3y| \(\ge\)0 với mọi y

\(\Rightarrow\)|x+1|+2|6.9-3y|+38 \(\ge\)38 với mọi x, y

\(\Rightarrow\)E\(\ge\)38 với mọi x,y 

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+1\right|=0\\2\left|6,9-3y\right|=0\hept{\begin{cases}\\\\\end{cases}}\\\end{cases}}\)|X+1|=0 VÀ 2|6.9-3y|=0

Suy ra: x+1= 0 và 6,9-3y= 0

Suy ra: x=-1 và y= 2,3

Vậy GTNN của E= 38 khi x= -1 và y= 2,3

k cho mk nhá

Hok tốt ^-^

11 tháng 10 2021

A=2
B=3

10 tháng 11 2024

-2018

 

11 tháng 10 2021

A=-1
B=3
C=1/3

18 tháng 4 2018

Ta có : 

\(\left(x-1\right)^2\ge0\)

\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)

Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)

Chúc bạn học tốt ~ 

18 tháng 4 2018

Ta có : 

\(\left|x-5\right|\ge5\)

\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)

Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\)

Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)

Chúc bạn học tốt ~ 

5 tháng 1 2016

Giá trị lớn nhất:

a) A=1

b) B=2015

Giá trị nhỏ nhất:

a) A=-1

b) B=-2

5 tháng 2 2020

\(A=\left|x+4\right|+28\)
Ta thấy \(\left|x+4\right|\ge0\) với mọi \(x\)
=> \(\left|x+4\right|+28\ge28\)

=> \(A\ge28\)

Dấu bằng xảy ra khi \(\left|x+4\right|=0\)

<=> \(x+4=0\)

<=> \(x=-4\)

Vậy giá trị nhỏ nhất của \(A=28\) tại \(x=-4\)

\(B=2018-\left|x+9\right|\)
Ta thấy \(\left|x+9\right|\ge0\)với mọi \(x\)

=> \(2018-\left|x+9\right|\le2018\)

=> \(B\le2018\)

Dấu bằng xảy ra khi \(\left|x+9\right|=0\)

<=> \(x+9=0\)

<=> \(x=-9\)

Vậy giá trị lớn nhất của \(B=2018\)tại \(x=-9\)

5 tháng 2 2020

   Câu thứ nhất :

Vì | x + 4 | \(\ge\)0 nên để A nhỏ nhất thì | x + 4 | nhỏ nhất .

Do đó | x + 4 | = 0 => x = -4 

Vậy x = -4

   Câu thứ hai :

Vì | x + 9 | \(\ge\)0 nên để B lớn nhất thì | x + 9 | nhỏ nhất 

Do đó | x + 9 | = 0 => x = -9 

Vậy x = -9

Hok tốt

# owe

10 tháng 7 2018

ta có

\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y

\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y

dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)

1 tháng 6 2021

Trả lời:

A = ( 2x - 7 )4

Ta có: \(\left(2x-7\right)^4\ge0\forall x\)

Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2

Vậy GTNN của A = 0 khi x = 7/2

B = ( x + 1 )10  + ( y - 2 )20 + 7 

Ta có:  \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1  và y - 2 = 0 <=> y = 2

Vậy GTNN của B = 7 khi x = -1 và y = 2

C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20

Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)

Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5

Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5

D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000

Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)

Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3

Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3

E = ( x - y )50 + ( y - 2 )60 + 3

Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\)\(\left(y-2\right)^{60}\ge0\forall y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)

Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2

Vậy GTNN của E = 3 khi x = y = 2