K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

C = \(y^2-2xy+x^2+2x^2-7\)

   = \(\left(y-x\right)^2+2x^2-7\)

Do \(\left(y-x\right)^2\ge0\)

      \(2x^2\ge0\)

=> \(\left(y-x\right)^2+2x^2-7\ge7\)

Min C = 7 <=> \(\hept{\begin{cases}2x^2=0=>x^2=0=>x=0\\y-x=0=>y=0\end{cases}}\)

29 tháng 10 2020

\(P=3x^2+y^2-2xy-3x+2\)

\(=x^2-2xy+y^2+2x^2-3x+2\)

\(=\left(x-y\right)^2+2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)

do\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-\frac{3}{4}\right)^2\ge0\end{cases}\Rightarrow P\ge\frac{7}{8}}\)

\(\Rightarrow P_{min}=\frac{7}{8}\)đạt được khi \(x=y=\frac{3}{4}\)

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

28 tháng 10 2020

Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015

= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 +  2014

= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)

Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3

28 tháng 10 2020

\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)

\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)

\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)

Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)

hay \(A\ge2014\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)

Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)

9 tháng 10 2016

\(A=2x^2+2xy+y^2+4x-10\)

=>\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)

=>\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow}\left(x+y\right)^2+\left(x+2\right)^2-14\ge-14\)

\(\Rightarrow A_{min}=-14\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Vậy Amin=-14 tại x=-2 và y=2

9 tháng 10 2016

\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)

\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)

\(\Rightarrow A_{min}=-14\Leftrightarrow x=-2,y=2\)

9 tháng 10 2016

Ta có :

\(x^2+y^2+2x+2y+2xy+5\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\)

Đặt x+y=a

Biểu thức trở thành :

\(a^2+2a+5\)

\(=a^2+2a+1+4\)

\(=\left(a+1\right)^2+4\)

Vì \(\left(a+1\right)^2\ge0\)

\(\Rightarrow\left(a+1\right)^2+4\ge4\)

Dấu " = " xảy ra khi a + 1 = 0

<=> x+y+1=0

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0

9 tháng 10 2016

 x^2 - 2xy + 6y^2 - 12x + 2y +45 
= x^2 - 2x(y+6) + (y+6)^2 - (y+6)^2 + 6y^2 +2y + 45 
= (x - y - 6)^2 - y^2 - 12y - 36 + 6y^2 + 2y + 45 
= (x - y - 6)^2 + 5y^2 - 10y + 9 
= (x - y - 6)^2 + 5.(y^2 - 2y +1) + 4 
= (x - y - 6)^2 + 5.(y-1)^2 + 4 
=>> MIN=4 khi (x;y)={(7;1)} 

16 tháng 8 2015

 

M= x2 +2y2 +2xy -4y +5

=x2+2xy+y2+y2-4y+4+1

=(x+y)2+(y-2)2+1

Vì \(\left(x+y\right)^2\ge0;\left(y-2\right)^2\ge0\)

nên: \(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)

 Dấu "=" xảy ra khi:

y-2=0 và x+y=0

<=>y=2 và x+2=0

<=>y=2 và x=-2

Vậy GTNN của M là 1 tại x=-2;y=2

18 tháng 7 2017

Bài 1

a)\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

MIN = \(-\frac{1}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)