Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3x^2+y^2-2xy-3x+2\)
\(=x^2-2xy+y^2+2x^2-3x+2\)
\(=\left(x-y\right)^2+2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\)
do\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-\frac{3}{4}\right)^2\ge0\end{cases}\Rightarrow P\ge\frac{7}{8}}\)
\(\Rightarrow P_{min}=\frac{7}{8}\)đạt được khi \(x=y=\frac{3}{4}\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Ta có A = (3x + 2)2 + (x2 + y2 - 2xy) - (2x - 2y) + 2015
= (3x + 2)2 + (x - y)2 - 2(x - y) + 1 + 2014
= (3x + 2)2 + (x - y - 1)2 + 2014 \(\ge\)2014
Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=x-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{5}{3}\end{cases}}\)
Vậy Min A = 2015 <=> x = -2/3 ; y = -5/3
\(A=\left(3x+2\right)^2+x^2+y^2-2xy-2x+2y+2015\)
\(=\left(3x+2\right)^2+\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+2014\)
\(=\left(3x+2\right)^2+\left(x-y\right)^2-2\left(x-y\right)+1+2014\)
\(=\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\)
Vì \(\left(3x+2\right)^2\ge0\forall x\); \(\left(x-y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+2\right)^2+\left(x-y-1\right)^2+2014\ge2014\forall x,y\)
hay \(A\ge2014\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=-2\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy \(minA=2014\)\(\Leftrightarrow x=-\frac{2}{3}\)và \(y=-\frac{5}{3}\)
\(A=2x^2+2xy+y^2+4x-10\)
=>\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)
=>\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow}\left(x+y\right)^2+\left(x+2\right)^2-14\ge-14\)
\(\Rightarrow A_{min}=-14\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)
Vậy Amin=-14 tại x=-2 và y=2
\(A=\left(x^2+2xy+y^2\right)+\left(x^2+4x+4\right)-14\)
\(A=\left(x+y\right)^2+\left(x+2\right)^2-14\)
\(\Rightarrow A_{min}=-14\Leftrightarrow x=-2,y=2\)
Ta có :
\(x^2+y^2+2x+2y+2xy+5\)
\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\)
Đặt x+y=a
Biểu thức trở thành :
\(a^2+2a+5\)
\(=a^2+2a+1+4\)
\(=\left(a+1\right)^2+4\)
Vì \(\left(a+1\right)^2\ge0\)
\(\Rightarrow\left(a+1\right)^2+4\ge4\)
Dấu " = " xảy ra khi a + 1 = 0
<=> x+y+1=0
Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0
M= x2 +2y2 +2xy -4y +5
=x2+2xy+y2+y2-4y+4+1
=(x+y)2+(y-2)2+1
Vì \(\left(x+y\right)^2\ge0;\left(y-2\right)^2\ge0\)
nên: \(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu "=" xảy ra khi:
y-2=0 và x+y=0
<=>y=2 và x+2=0
<=>y=2 và x=-2
Vậy GTNN của M là 1 tại x=-2;y=2
Bài 1
a)\(=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
MIN = \(-\frac{1}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)
C = \(y^2-2xy+x^2+2x^2-7\)
= \(\left(y-x\right)^2+2x^2-7\)
Do \(\left(y-x\right)^2\ge0\)
\(2x^2\ge0\)
=> \(\left(y-x\right)^2+2x^2-7\ge7\)
Min C = 7 <=> \(\hept{\begin{cases}2x^2=0=>x^2=0=>x=0\\y-x=0=>y=0\end{cases}}\)