Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2x-1\right)^4-3\le-3\)
Dấu "=" xảy ra khi và chỉ khi (2x - 1)4 = 0; khi đó 2x - 1 = 0 => 2x = 1 => x = 1/2
Vậy GTNN của (2x - 1)4 - 3 = -3 khi và chỉ khi x = 1/2
Do \(\left(2x-1\right)^4\ge0\forall x\)
\(\Rightarrow\left(2x-1\right)^4-3\ge-3\forall x\)
Dấu "=" xảy ra khi :
\(2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy biểu thức trên có giá trị nhỏ nhất là -3 khi \(x=\frac{1}{2}\)
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
\(B=\left|1-2x\right|+\left|y+7\right|=\left|2x-1\right|+\left|y+7\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) \(\forall a;b\) Ta có :
\(B=\left|2x-1\right|+\left|y+7\right|\ge\left|\left(2x-1\right)+\left(y+7\right)\right|=\left|\left(2x+y\right)+6\right|=\left|2010+6\right|=2016\)
Dấu "=" xảy ra <=> \(\left(1-2x\right)\left(y+7\right)\ge0\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\y\ge-7\end{cases}}\)
Vậy \(B_{min}=2016\) tại \(x\le\frac{1}{2};y\ge7\)
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !
a) Vì |2x-1|\(\ge0\)
\(\Rightarrow A=\left|2x-1\right|+5\ge5\)
Dấu '=' xảy ra khi \(2x-1=0\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy Min A = 5 khi x =1/2
b)Vì \(\frac{1}{2}\left|x-1\right|\ge0\)
\(\Rightarrow B\ge3\)
Dấu '=' xảy ra khi x-1 =0
<=> x=1
Vậy Min B = 3 khi x =1
\(M=\frac{\sqrt{2x-5}-3}{\sqrt{2x-5}+1}=\frac{\sqrt{2x-5}+1-4}{\sqrt{2x-5}+1}=1-\frac{4}{\sqrt{2x-5}+1}\ge1-\frac{4}{1}\)
Dấu = xảy ra khi \(\sqrt{2x-5}=0\)
\(\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
Vậy...
\(M=\frac{\sqrt{2x-5}-3}{1+\sqrt{2x-5}}=1-\frac{4}{1+\sqrt{2x-5}}\)
\(1+\sqrt{2x-5}\ge1\left(\forall x\right)\Rightarrow\frac{4}{1+\sqrt{2x-5}}\le4\left(\forall x\right)\)
\(\Rightarrow\frac{-4}{1+\sqrt{2x-5}}\ge-4\forall x\Rightarrow M=1-\frac{4}{1+\sqrt{2x-5}}\ge-3\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\sqrt{2x-5}=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
Vậy GTNN của M là -3 khi x = 2,5