K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(x^2\ge0;y^2\ge0\)

\(\Rightarrow x^2+y^2+2013\ge2013\)

\(MinA=2013\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)

3 tháng 8 2016

GTNN của A là 2013

GTNN của B là -1

20 tháng 7 2020

\(\left(x^2-9\right)^2+\left|y-3\right|-1\)

Nhận thấy rằng : 

\(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y+3\right|\ge0\forall y\end{cases}\Rightarrow}\left(x^2-9\right)^2+\left|y+3\right|\ge0\forall x,y\)

Cộng -1 vào cả hai vế :

\(\Rightarrow\left(x^2-9\right)^2+\left|y+3\right|-1\ge-1\)

Dấu = xảy ra <=> \(\hept{\begin{cases}x^2-9=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=-3\end{cases}}\)

Vậy GTNN của biểu thức = -1 khi ( x ; y ) = ( 3 ; -3 ) hoặc ( x ; y ) = ( -3 ; -3 )

20 tháng 7 2020

y-3 hay y+3 vậy bn?

12 tháng 2 2018

Bài j mà dễ v~ !

3 tháng 10 2018

dễ thì bạn làm đi chớ

5 tháng 1 2016

Giá trị lớn nhất:

a) A=1

b) B=2015

Giá trị nhỏ nhất:

a) A=-1

b) B=-2

29 tháng 1 2020

a) \(A=\left(x+4\right)^2+\left|y-5\right|-7\)

Ta thấy : \(\left(x+4\right)^2\ge0\)

                 \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(x+4\right)^2+\left|y-5\right|-7\ge-7\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)

Vậy \(minA=-7\Leftrightarrow\hept{\begin{cases}x=-4\\y=5\end{cases}}\)

b) \(B=\left(x-4\right)^2+\left|y-5\right|+9\)

Ta thấy : \(\left(x-4\right)^2\ge0\)

                \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left|y-5\right|+9\ge9\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left|y-5\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)

Vậy \(minB=9\Leftrightarrow\hept{\begin{cases}x=4\\y=5\end{cases}}\)

12 tháng 1 2019

ko biết

1 tháng 4 2020

a)  ( x - 1 )2 \(\ge\)0

\(|2y+2|\)\(\ge0\)

\(\Rightarrow\left(x-1\right)^2+|2y+2|\ge0\)

\(\Rightarrow\left(x-1\right)^2+|2y+2|-3\ge-3\)

\(Min_A=-3\)

29 tháng 3 2020

a)Để A đạt GTNN \(\Rightarrow\)\(^{\left(x-2\right)^2}\) là số tự nhiên nhỏ nhất

\(\Rightarrow\)\(\left(x-2\right)^2\) =0

\(\Rightarrow\) x-2=0

\(\Rightarrow\) x=2

Khi đó: A=(2-2)^2+=3

Vậy A đạt GTNN là 3 tại x=2

b)Để B đạt GTNN, suy ra

5(3-x)^2 là số tự nhiên nhỏ nhất

\(\Rightarrow5\left(3-x\right)^2=0\)

\(\Rightarrow\) x=3

Khi đó: B=4

Vậy B đạt GTNN là 4 tại x=3c) Ta có

c) TA có: (2x-3)^2\(\ge\)0 với mọi x thuộc Z

(2-y) ^ 4\(\ge\)0 với mọi y thuộc Z

Từ 2 điều trên, để A có GTNN, suy ra:\(\hept{\begin{cases}\\\left(2-y\right)^4=0\Rightarrow y=2\end{cases}\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}}\)

Khi đó C=0 tại x=3/2, y=2

29 tháng 3 2020

\(A=\left(x-2\right)^2+3\)

Do \(\left(x-2\right)^2\)> hoặc bằng 0

=>A > hoặc bằng 3

Vậy GTNN của A là 3 <=>\(x-2=0\)

                                          =>x=2