Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: \(\left|x-2\right|\ge0\)
\(\left|x-10\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left|x-10\right|+4\ge4\)
Xét \(\orbr{\begin{cases}x-2=0\Rightarrow x=2\Rightarrow A=0+8+4=12\\x-10=0\Rightarrow x=10\Rightarrow A=8+0+4=12\end{cases}}\)
Vậy \(Min_A=12\) tại \(x=2\) hoặc \(10\)
b) Có: \(\left|x-1\right|\ge0\)
\(\left|x-2\right|\ge0\)
\(\left|x-3\right|\ge0\)
\(\Rightarrow B\ge0\)
Xét: \(\hept{\begin{cases}x-1=0\Rightarrow x=1\Rightarrow B=0+1+2=3\\x-2=0\Rightarrow x=2\Rightarrow B=1+0+1=2\\x-3=0\Rightarrow x=3\Rightarrow B=2+1+0=3\end{cases}}\)
Vậy \(Min_B=2\) tại \(x=2\)
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)
Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)
Vậy MinA = 11 khi -2 =< x =< 9
b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)
Dấu "=" xảy ra khi x = 1
Vậy MaxB = 3/4 khi x=1
Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)
Vậy \(A_{min}=11\) khi \(2\le x\le9\)
GTLN:A=11
GTNN:B=2
CÒN GTLN CÂU B KO TIM ĐƯỢC
GTNN CÂU A KO TÌM ĐƯỢC
/x-2/+/x-8/=-10
Vậy A=-10
/x+8/+/x+13/+/x+50/=71
Vậy B=71