K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

\(\infty\)

4 tháng 11 2016

\(Min\)\(A=100\)

khi và chỉ khi \(\orbr{\begin{cases}x=102\\x=2\end{cases}}\)

26 tháng 1 2017

\(\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\ge5\)

...............................................

31 tháng 3 2017

2(x+3)^2 >= 0

=> min A= 0 <=> x+3=0

                   <=> x=-3

31 tháng 3 2017

Để biểu thức A đạt GTNN thì (x+3)2 phải có GTNN khi x+3=0 
                                                                          =>x    =0-3

                                                                          =>x    =-3

Thay -3 vào biểu thức ta được 2(-3+3)2=0

Vậy GTNN của biểu thức là 0 khi x=-3

10 tháng 5 2016

viết ại đề đi bn ," | " chứ?

10 tháng 5 2016

em nghĩ là =0

12 tháng 6 2017

\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)

\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)

\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)

\(\Rightarrow2A\ge-18\)

\(\Rightarrow A\ge-9\)

DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)

26 tháng 6 2017

Cảm ơn bạn nhiều

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^