Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: H=|x-3|+|4+x|=|3-x|+|4+x|\(\ge\)|3-x+4+x|=7
Dấu "=" xảy ra khi \(-4\le x\le3\)
Vậy minH=7 khi \(-4\le x\le3\)
\(H=\left|x-3\right|+\left|4+x\right|=\left|-x+3\right|+\left|4+x\right|\ge\left|-x+3+4+x\right|=7\)
dấu = xảy ra khi \(\left(-x+3\right).\left(4+x\right)\ge0\)
=>\(-4\le x\le3\)
Vậy Min H=7 khi \(-4\le x\le3\)
\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\ge\left|3-x+4+x\right|=7\)
Dấu bằng xảy ra \(\Leftrightarrow\left(3-x\right)\left(4+x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}3-x\ge0,4+x\ge0\\3-x\le0,4+x\le0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le3,x\ge-4\\x\ge3,x\le-4\left(VL\right)\end{matrix}\right.\) \(\Rightarrow-4\le x\le3\) Vậy...
Có:\(H=\left|3-x\right|+\left|x+4\right|=\left|3-x\right|+\left|x+4\right|\)
Vậy áp dụng pđt : \(\left|A\right|+\left|B\right|\) ≥ \(\left|A+B\right|\) ta có L
\(H\) ≥ \(\left|3-x+4+x\right|=7\)
Vậy GTNN của \(H\) là 7 khi \(\left[{}\begin{matrix}3-x\\x+4\end{matrix}\right.\)≥0⇔ -4 ≤ x≤ 3
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
a) |x+3/4| >/ 0
|x+3/4| + 1/2 >/ 1/2
MinA= 1/2 <=> x+3/4 =0 hay x= -3/4
b) 2|2x-4/3| >/ 0
2|2x-4/3| -1 >/ -1
MinB = -1 <=> 2|2x-4/3| = 0 hay x=2/3
Bài tiếp théo:
a) -2|x+4| \< 0
-2|x+4| +1 \< 1
MaxA=1 <=> -2|x+4| = 0 hay = -4
b) -3|x-5| \< 0
-3|x-5| + 11/4 \< 11/4
MaxB=11/4 <=> -3|x-5| = 0 hay x=-5
\(H=\left|x-3\right|+\left|4+x\right|\)
\(H=\left|3-x\right|+\left|4+x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(H\ge\left|3-x+4+x\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi ( có 2 trường hợp )
TH1: \(\hept{\begin{cases}3-x>0\\4+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}\Rightarrow}-3< x< 3\left(Chon\right)}\)
TH2: \(\hept{\begin{cases}3-x< 0\\4+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -4\end{cases}\Rightarrow}3< x< -4\left(Loai\right)}\)
Vậy Hmin = 7 khi và chỉ khi -3 < x < 3
Ta có:
\(\hept{\begin{cases}\left|x-3\right|=\left|3-x\right|\ge3-x\\\left|4+x\right|\ge4+x\end{cases}\forall x}\)
\(H=\left|x-3\right|+\left|4+x\right|\)
\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\)
\(\Rightarrow H\ge3-x+4+x=7\)
\(H=7\Leftrightarrow\hept{\begin{cases}\left|3-x\right|=3-x\\\left|4+x\right|=4+x\end{cases}\Leftrightarrow}\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Leftrightarrow-4\le x\le3}\)
Vậy \(H_{min}=7\Leftrightarrow-4\le x\le3\)
\(H=\left|x-3\right|+\left|4+x\right|\)
\(H=\left|3-x\right|+\left|4+x\right|\ge\left|3-x+4+x\right|=7\)
\(\Leftrightarrow H\ge7\)
Dấu bằng xảy ra khi \(\left(3-x\right)\left(4+x\right)\ge0\)
\(\Leftrightarrow3\le x\le4\)
Vậy....................