K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

giúp mình với ạ mình cần gấp

27 tháng 12 2021

S= x^2 +4y^2 - 4x +16y +2041

<=> S= x^2 + 4y^2 - 4x + 16y + 4 + 16 + 2021

<=> S= (x^2 - 4x + 4) + (4y^2 + 16y + 16) +2021

<=> S= (x-2)2 + (2y+4)2 +2021

Vì:  (x-2)2 + (2y+4)2 > 0 

=> (x-2)2 + (2y+4)2 +2021 > 2021

Dấu "=" xảy ra khi và chỉ khi (x-2)2=0 <=> x-2=0 <=> x=2

                                               (2y+4)2=0<=>2y+4=0<=>2y=-4<=>y=-4/2=-2

Vậy Smin=2021 khi x=2 và y=-2

25 tháng 3 2020

C = 2x^2 + y^2 + 2xy - 4x - 2016

C = (x^2 + 2xy + y^2) + (x^2 - 4x + 4) - 2020

C = (x + y)^2 + (x - 2)^2 - 2020

(x+y)^2 > 0; (x - 2)^2 > 0

C > -2020

dấu "=" xảy ra khi x + y = 0 và x - 2 = 0

<=> x = 2; y = -2

25 tháng 3 2020

\(x^2+2\ge2\Rightarrow\frac{6}{x^2+2}\le\frac{6}{2}=3\)

Vay Max D=3, dau = xay ra khi x=0

22 tháng 10 2021

A=−2x2−10y2+4xy+4x+4y+2016A=−2x2−10y2+4xy+4x+4y+2016

=−2.(x2+5y2−4xy−4x−4y)+2016=−2.(x2+5y2−4xy−4x−4y)+2016

=−2.(x2+4y2+4−4xy−4x+8y+y2−12y+36)+2.36+2016=−2.(x2+4y2+4−4xy−4x+8y+y2−12y+36)+2.36+2016

=−2.[(x−2y−2)2+(y−6)2]+2088=−2.[(x−2y−2)2+(y−6)2]+2088

Ta có: (x−2y−2)2+(y−6)2≥0(x−2y−2)2+(y−6)2≥0

⇒−2.[(x−2y−2)2+(y−6)2]≤0⇒−2.[(x−2y−2)2+(y−6)2]≤0

⇒−2.[(x−2y−2)2+(y−6)2]+2088≤2088⇒−2.[(x−2y−2)2+(y−6)2]+2088≤2088

⇒A≤2088⇒A≤2088

Vậy giá trị lớn nhất của A=2088A=2088 khi: \hept{x−2y−2=0y=6⇒\hept{x=2y+2y=6⇒\hept{x=14y=6\hept{x−2y−2=0y=6⇒\hept{x=2y+2y=6⇒\hept{x=14y=6

Thu gọn

22 tháng 10 2021

\(A=-2\left(x^2+2xy+y^2\right)+4\left(x+y\right)-2-8y^2+2018\\ A=-2\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-8y^2+2018\\ A=-2\left(x+y-1\right)^2-8y^2+2018\le2018\\ A_{max}=2018\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(M=x^2-2xy+4y^2+12xy+22\)

\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)

\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\) 

( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt ) 

1 tháng 7 2016

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

3 tháng 1 2021

Vừa học xong :v 

\(A=\frac{4}{4x^2-4x+7}\)

Ta có : \(4x^2-4x+7=4x^2-4x+1+6\)

\(=\left(2x-1\right)^2+6\ge6\)Do đó : 

\(\frac{4}{\left(2x-1\right)^2+6}\le\frac{4}{6}=\frac{2}{3}\)

Dấu ''='' xảy ra : <=> \(x=\frac{1}{2}\)

Vậy GTLN A = 2/3 <=> x = 1/2

3 tháng 1 2021

Ta có : 4x2 - 4x + 7

= ( 4x2 - 4x + 1 ) + 6

= ( 2x - 1 )2 + 6 ≥ 6 ∀ x

hay 4x2 - 4x + 7 ≥ 6 ∀ x

=> \(\frac{1}{4x^2-4x+7}\le\frac{1}{6}\left(\forall x\right)\)

=> \(\frac{4}{4x^2-4x+7}\le\frac{4}{6}=\frac{2}{3}\left(\forall x\right)\)

Đẳng thức xảy ra khi x = 1/2

=> MaxA = 2/3 <=> x = 1/2

22 tháng 7 2017

\(x^2+2xy+y^2\) +\(y^2-4y+4+1\)

=\(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)

dau = xay ra \(\Leftrightarrow y=2\),\(x=-2\)

min M =1 khi x=-2 y=2

2 tháng 2 2018

\(A=x^2+2y^2-2xy-4y+2016\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\)\(\ge\)\(2012\),        \(\forall x,y\)   

Dấu  "="   xảy ra   \(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=y=2\\y=2\end{cases}}\)

Vậy....

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2