Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M= x2 +2y2 +2xy -4y +5
=x2+2xy+y2+y2-4y+4+1
=(x+y)2+(y-2)2+1
Vì \(\left(x+y\right)^2\ge0;\left(y-2\right)^2\ge0\)
nên: \(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu "=" xảy ra khi:
y-2=0 và x+y=0
<=>y=2 và x+2=0
<=>y=2 và x=-2
Vậy GTNN của M là 1 tại x=-2;y=2
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Ta có: \(A=x^2-2xy+2y^2-4y+5\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu "=" xảy ra khi: \(x=y=2\)
Vậy ...
Ta có:
\(A=x^2-2xy+2y^2-4y+5\)
\(A=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)
Dấu " = " xảy ra khi \(x=y=2\)
Rất vui vì giúp đc bạn !!!
Ta có :
\(x^2+y^2+2x+2y+2xy+5\)
\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+5\)
\(=\left(x+y\right)^2+2\left(x+y\right)+5\)
Đặt x+y=a
Biểu thức trở thành :
\(a^2+2a+5\)
\(=a^2+2a+1+4\)
\(=\left(a+1\right)^2+4\)
Vì \(\left(a+1\right)^2\ge0\)
\(\Rightarrow\left(a+1\right)^2+4\ge4\)
Dấu " = " xảy ra khi a + 1 = 0
<=> x+y+1=0
Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x + y + 1 = 0
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
A \(=\) x\(^2\) +2y\(^2\) - 2xy- 4y + 5
\(=\) ( x\(^2\) + y\(^2\) - 2xy ) + ( y\(^2\) - 4y + 4 ) + 1
\(=\) ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1
Vì ( x + y )\(^2\) và ( y - 2 )\(^2\) > 0 ∀ x và y
Nên ( x + y )\(^2\) + ( y - 2 )\(^2\) + 1 > 1 ∀ x và y
Vậy A có giá trị nhỏ nhất là 1 khi
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\text{x + y =0}\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
B = 5x\(^2\) + 8xy + 5y\(^2\) - 2x = 2y ???
Đề bài câu B sai
Ta có : \(x^2+y^2-2x+4y+1\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)-4\)
\(A=\left(x-1\right)^2+\left(y+2\right)^2-4\)
Vì \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\in R\)
Nên : \(A=\left(x-1\right)^2+\left(y+2\right)^2-4\ge-4\forall x,y\in R\)
Vậy \(A_{min}=-4\) khi x = 1 và y = -2
trước tiên bạn nên đưa về dạng tổng hai bình phương
\(A=x^2-2xy+2y^2-4y+5\\=(x^2-2xy+y^2)+(y^2-4y+4)+1\\=(x-y)^2+(y-2)^2+1\)
Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2\ge0\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\)
\(\Leftrightarrow x=y=2\)
Vậy \(Min_A=1\) khi \(x=y=2\).
$Toru$