Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)+2015\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2015\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2015\)
Đặt \(x^2+5x=t\) ta có pt trở thành:
\(\left(t-6\right)\left(t+6\right)+2015\)
\(=t^2-36+2015=t^2+1979\)
Vì: \(t^2\ge0\)
=> \(t^2+1979\ge1979\)
Vậy GTNN của bt trên là 1979 khi \(t=0\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-5\end{array}\right.\)
\(A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+2015\)
\(\left(x^2+5x-6\right)\left(x^2+5x+6\right)+2015\)
\(=\left(x^2+5x\right)^2-6^2+2015\)
\(=\left[x\left(x+5\right)\right]^2+1979\ge1979\)
\(\Rightarrow Min_A=1979\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-5\end{array}\right.\)
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1
Ta có: A=2010x+2068x2+1A=2010x+2068x2+1
=−335(x2+1)+335x2+2010x+3015x2+1=−335(x2+1)+335x2+2010x+3015x2+1
=−335+335(x+3)2x2+1≥−335=−335+335(x+3)2x2+1≥−335
Ta có: A=2010x+2068x2+1A=2010x+2068x2+1
=3015(x2+1)−3015x2+2010x−335x2+1=3015(x2+1)−3015x2+2010x−335x2+1
=3015+−335(3x−1)2x2+1≤3015
cố gắng để lớp 5 không thua lớp trên
ta có:2010x+2608/x2+1
=>2010+2608/x+1(rút gọn trên tử vs dưới mẫu 1 x đi là đươc)
=>x+1=2010+2608
=>x=2010+2608/1
=>x=4690
p/s: mình cũng ko biết đúng khồn nhé, đúng sai gì thì bạn góp ý giúp tớ với.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Ta có: A = (x + 2)(x - 3)
= x2 - x - 6
=\(x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{25}{4}\)
= \(\left(x-\frac{1}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)
Dấu "=" xảy ra <=> \(x-\frac{1}{2}=0\Rightarrow x=0,5\)
Vậy Min A = -25/4 <=> x = 0,5