Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2A = 4x^2+6y^2+8xy-16x-4x+36
= [(4x^2+8xy+4y^2)-2.(2x+2y).4+16] + (2y^2+12y+18) + 2
= [(2x+2y)^2-2.(2x+2y).4+16]+2.(y^2+6x+9)+2
= (2x+2y-4)^2+2.(y+3)^2+4 >= 2 => A > = 1
Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 ; y=-3
Vậy GTNN của A = 1 <=> x=5 ; y=-3
Tk mk nha
Đã bảo bao nhiêu lần là vô công thức toán học mà gõ mà chẳng chịu làm theo làm tôi đọc đau hết cả mắt mà chả hiểu gì
-_- hại mắt người ta
Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)
Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)
do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)
Dấu "=" xảy ra khi x-2y+1=0 và y+1=0
ta có:
y+1=0=>y=0-1=>y=-1
thay y=-1 và x-2y+1=0
=>x-2.(-1)+1=0
=>x+2+1=0
=>x+2=-1
=>x=-1-2
=>x=-3
vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1
\(A=x^2-x+1\)
\(A=x^2-2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(A=\left(x-\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(A=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow GTNNx^2-x-1=\frac{3}{4}\)
với \(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
\(B=3x^2-2x+1\)
\(B=3\left(x^2-\frac{2}{3}x+\frac{1}{3}\right)\)
\(B=3\left(x^2-2\cdot\frac{1}{3}x+\left(\frac{1}{3}\right)^2-\frac{1}{9}+\frac{1}{3}\right)\)
\(B=3\left[\left(x-\frac{1}{3}\right)^2+\frac{2}{9}\right]\)
\(B=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)
có \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{2}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
\(\Rightarrow GTNN3x^2-2x+1=\frac{2}{3}\)
với\(\left(x-\frac{1}{2}\right)^2=0;x=\frac{1}{2}\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
\(A=2x^2+3y^2+4xy-8x-2y+18\)
\(\Rightarrow2A=4x^2+6y^2+8xy-16x-4y+36\)
\(=\left(4x^2+8xy+4y^2\right)-8\left(2x+2y\right)+16+2y^2+12y+18+2\)
\(=\left(2x+2y\right)^2-8\left(2x+2y\right)+16+2\left(y^2+6y+9\right)+2\)
\(=\left(2x+2y-4\right)^2+2\left(y+3\right)^2+2\ge2\forall x;y\)
\(\Rightarrow A\ge1\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x+2y-4=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-10=0\\y=-3\end{matrix}\right.\)
\(\Leftrightarrow x=5;y=-3\)
Vậy ...
2x^2+3y^2+4xy-8x-2y+18
=2(x^2 + 2xy + y^2) + y^2 -8x -2y + 18
=2(x+y)^2 +2(-4x-4y)+8+( y^2 + 6y +9)+1
= 2[(x+y)2 - 4(x + y) +4] + ( y^2 + 6y +9) + 1
= 2(x + y - 2)^2 + (y+3)^2 + 1
Vậy min = 1 khi x = 5; y = -3